scholarly journals Efficacy of Thai indigenous entomopathogenic nematodes for controlling fall armyworm (Spodoptera frugiperda) (J. E. Smith)(Lepidoptera; Noctuidae)

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Wandee Wattanachaiyingcharoen ◽  
Ongpo Lepcha ◽  
Apichat Vitta ◽  
Det Wattanachaiyingcharoen

Abstract Background Under laboratory and greenhouse conditions, the virulence of 2 isolates of Thai indigenous entomopathogenic nematodes (EPNs) in controlling the fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera; Noctuidae), was demonstrated. Six EPNs dosages were tested against 2 larval instars of FAW under the laboratory conditions, while 2 different concentrations were tested under the greenhouse conditions. Results The results of a laboratory experiment revealed that 2 Thai indigenous EPNs isolates (Heterorhabditis indica isolate AUT 13.2 and Steinernema siamkayai isolate APL 12.3) were efficient against the FAW, 2nd and 5th larval instars. Six different nematode concentrations (50,100, 150, 200, 250 and 300 infectious juveniles (IJs) ml−1) were evaluated, and all were proven to be effective, with the mortality rate associated with concentration. Inoculated larvae in the 2nd instar was more vulnerable than that in the 5th instar. H. indica isolate AUT 13.2 was more destructive than S. siamkayai isolate APL 12.3. The greatest mortality rate of 2nd instar larvae was 83% when H. indica AUT 13.2 was applied at the concentration of 250 IJs ml−1, and 68% when the nematode S. siamkayai APL 12.3 was used at the concentration of 300 IJs ml−1. At 250 IJsml−1, the highest mortality rate of the 5th instar larvae was 45% for H. indica AUT 13.2 and 33% for S. siamkayai APL 12.3, respectively. To customize the concentration and volume of nematodes suspension evaluated in the greenhouse settings, the most sensitive stage of FAW and the optimum concentration that caused the highest mortality were used. The concentrations of both indigenous nematodes’ isolates were 20,000 and 50,000 IJsml−1 per pot, respectively, and the results showed that the mortality rates were lower than that in the laboratory. FAW mortality rate was the highest (58%) in case of the nematode H. indica isolate AUT 13.2, against (45%) in case of S. siamkayai isolate APL 12.3, at the 50,000 IJs ml−1 concentrations. Conclusions The study revealed the 2 Thai indigenous EPNs isolates (H. indica isolate AUT 13.2 and S. siamkayai isolate APL 12.3) were capable of controlling the FAW in both laboratory and greenhouse environments. The 2 Thai EPNs showed the potential to be considered as a biological control agent.

2020 ◽  
Vol 25 (4) ◽  
pp. 649-657
Author(s):  
Jianfeng Liu ◽  
Tai-An Tian ◽  
Xue-Lin Li ◽  
Yi-Chai Chen ◽  
Xiao-Fei Yu ◽  
...  

The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), is one of the most damaging noctuid pests of maize and is reported in China at the beginning of 2019. It poses a serious threat to the food security of China. In order to find an attractive alternative to reduce the application of chemical insecticides, we screened different initial mite densities of Pyemotes zhonghuajia on the mortality rate of different stages of FAW and also recorded the number of P. zhonghuajia on FAW at the different times (24, 48, and 72 h). The results showed that initial mite densities had a significant effect on the mortality rates of all stages of FAW and the number of P. zhonghuajia found on the surface of FAW. One P. zhonghuajia female was able to significantly induce the mortality of FAW in the 1st to 3rd instar larvae, and the mite density of 40 could achieve 100% FAW mortality when added 1st to 5th instar larvae and prepupae. There was an increasing number of P. zhonghuajia on FAW from the 2nd to 4th instar larvae stages at all three days. These results provide the basic information for considering P. zhonghuajia as a suitable bio-control agent against FAW in China. 


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 868
Author(s):  
Rajendra Acharya ◽  
Hwal-Su Hwang ◽  
Md Munir Mostafiz ◽  
Yeon-Su Yu ◽  
Kyeong-Yeoll Lee

The fall armyworm, Spodoptera frugiperda, which is native to Central and South America, has recently invaded Africa and Asia, causing serious damage to various crops. Although management to date has been largely unsuccessful, entomopathogenic nematodes (EPNs) are a potential biological control agent that could be used to control the late larval and pupal stages of S. frugiperda that dwell under the ground. Here, we compared the virulence of seven EPNs against larval and pupal stages of S. frugiperda. In a Petri dish assay, both Heterorhabditis indica and Steinernema carpocapsae were highly virulent against younger larvae, whereas S. arenarium and S. longicaudum were highly virulent against older larvae. In contrast, H. bacteriophora, Heterorhabditis sp., and S. kushidai showed low virulence against all larval stages. In soil column and pot assays, H. indica, S. carpocapsae, and S. longicaudum were highly virulent against late larval and pupal stages compared with the other EPN species. Thus, H. indica, S. carpocapsae, and S. longicaudum are recommended for the biological control of S. frugiperda. Our study provides important information of EPNs for the practical application of biological control of fall armyworm.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hrang Chal Lalramnghaki ◽  
Lalramliana ◽  
Hmar Tlawmte Lalremsanga ◽  
Vanlalhlimpuia ◽  
Mary Lalramchuani ◽  
...  

Abstract Background Outbreak of the fall armyworm Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) occurred in Mizoram, North-Eastern India. The infestation spread in the entire state covering a total area of around 2840 hectares of maize cultivated land. Entomopathogenic nematodes (EPNs) represent potential candidates for the biological control of S. frugiperda. In the study, the susceptibility of the pest against 4 locally isolated EPN species Heterorhabditis indica, H. baujardi, Steinernema sangi and S. surkhetense was evaluated. Results The results indicated that all the isolated EPN species showed a high rate of larvicidal and pupicidal activities against the pest. Mortality between 43.75–100.00 and 25.00–100.00% of 3rd and 5th larval instars, respectively (at concentrations 10–800 IJs/larva), and 37.50–68.75% mortality of pupae (at concentrations 200–1600 IJs /pupa) were found after exposure to the EPN species. The mortality rate of the pest showed significant variations with life stages of the host insect, nematode concentrations and incubation time. Based on the median lethal concentration (LC50), H. indica was the most pathogenic species, followed by S. sangi, H. baujardi and S. surkhetense. The LC50 values of H. indica at 72 h post-incubation were 20.26 and 62.07 IJs/larva for the 3rd and 5th larval instars, respectively, and 913.34 IJs/pupa. The penetration assay showed that H. indica had the highest penetration rate into the hosts, 27.24, 21.30 and 20.00% in the 3rd, 5th larval instars and pupae, respectively. Furthermore, all the EPN isolates were capable of successful multiplication inside the cadaver of S. frugiperda that showed significant differences with the EPN isolates and life stages of the pest. Among the isolates, H. indica showed the highest multiplication rates, 17,692.25 ± 2103.59, 8345.63 ± 785.34 and 79,146.38 ± 5943.73 IJs per 3rd instar larva, 5th instar larva and pupa, respectively. Conclusions The study revealed that the 4 species of EPNs showed a high potency against S. frugiperda, thereby having the potential to be developed as a biological control agent against the pest. Moreover, the isolated EPN species could potentially serve as alternatives for chemical insecticides and could further be incorporated into the Integrated Pest Management (IPM).


2021 ◽  
Vol 9 (4) ◽  
pp. 118-123
Author(s):  
Cheikh Atab Diédhiou ◽  

Since chemical insecticides favor the emergence of resistance and have disastrous consequences for the environment, we became interested in an alternative control method against Spodoptera frugiperda, more respectful for the environment. We therefore evaluated the effectiveness of the bio-insecticidal effects of plants extracts and oil of castor against the fall armyworm in the laboratory. The laboratory bioassays consisted of evaluating the toxicity of the castor plants extracts and oil by contact and ingestion on fourth instar larvae of Spodoptera frugiperda using a leaf dipping method. It emerges from this study that the mortality of the larvae treated with the bio-insecticide and the control solution varies significantly and that the mortality rate was 100% for dose 1; 85% for dose 2 and 70% for dose 3. The mortality rate for the control solution is 10%. These results testify to the good larvicidal activity of the organic insecticide based on oil, leaves and unripe seeds of castor bean on the fall armyworm.


2022 ◽  
Author(s):  
Indra Kumar Kasi ◽  
Mohinder Singh ◽  
Kanchhi Maya Waiba

Abstract Invasive species are a major danger to agronomic and natural ecosystems, and due to environmental concerns about pesticide use, EPNs have the potential to replace larvicidal action in pest management. The goal was to see how well local isolates of Steinernema feltiae (HR1) and Heterorhabditis bacteriophora (HR2) controlled invasive species when combined with low-toxicity pesticides. HR1 + Spinosad, chlorantraniliprole produced over 90% mortality in larvae at 96 hours, while HR2 + Spinosad, chlorantraniliprole caused over 95% mortality at 96 hours. After treatment, the high dose was regarded the least hazardous technique for controlling fall armyworm. At the high dose, HR1 + Spinosad, chlorantraniliprole produced larvae death of over 100 percent at 96 hours, and HR2 + Spinosad, chlorantraniliprole caused mortality of over 97.50 percent at 96 hours, and should be considered as a least hazardous strategy for T. absoluta management. Controlling larvae mortality of above 100% at 96 hours in combination with low-toxicity insecticide dosages should be included as a least harmful technique to control T. absoluta. The results showed that these HR2 strains have high pathogenicity against T. absoluta and S. frugiperda and have potential for control in integrated approaches, causing 100 percent and 90.00 percent mortality of T. absoluta and S. frugiperda at 96 hours at the high dose as a least toxic strategy to control.


Author(s):  
Tabea Allen ◽  
Marc Kenis ◽  
Lindsey Norgrove

AbstractThe fall armyworm, Spodoptera frugiperda, an American Lepidoptera, is invasive in Africa and Asia and currently one of the most damaging cereal pests in the tropics. The ichneumonid parasitoid, Eiphosoma laphygmae, is a potential classical biological control agent. We assessed existing knowledge on biology, identified natural distributions, collated reported parasitism rates from field studies and determined which other parasitoids co-occurred. We discussed the suitability of E. laphygmae for classical biological control as well as identified limitations and knowledge gaps. We conducted a systematic literature review and had 185 hits, retaining 52 papers. Reports on the natural distribution of E. laphygmae were restricted to the American tropics, ranging from North-East Mexico to Sao Paulo State, Brazil. There were only two single and unconfirmed records of it on other hosts, suggesting that the parasitoid may be specific to S. frugiperda, but this needs confirmation. In fields where E. laphygmae occurred naturally, it was the second most important contributor to fall armyworm mortality, after the braconid Chelonus insularis. On average, E. laphygmae parasitized 4.5% of fall armyworm in field studies. The highest parasitism rates were from Costa Rica (13%) and Minas Gerais, Brazil (14.5%). However, these parasitism rates are probably largely underestimated because of likely biases in sampling and parasitism rate calculations. Eiphosoma laphygmae appeared to establish better in more diverse, weedy systems. As African farming systems often have high diversity, this may favour the establishment and parasitism of E. laphygmae if eventually introduced as a classical biological control agent.


2020 ◽  
Author(s):  
Tomás Masson ◽  
María Laura Fabre ◽  
Matias Luis Pidre ◽  
José María Niz ◽  
Marcelo Facundo Berretta ◽  
...  

AbstractSpodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) represents a strong candidate to develop environmental-friendly pesticides against the fall armyworm (Spodoptera frugiperda), a widespread pest that poses a severe threat to different crops around the world. However, little is known regarding the genomic diversity present inside SfMNPV isolates and how it shapes the interactions between virus and host. Here, the genomic diversity present inside an isolate of SfMNPV was explored using high-throughput sequencing for the first time. We identified 704 intrahost single nucleotide variants, from which 184 are nonsynonymous mutations distributed among 82 different coding sequences. We detected several structural variants affecting SfMNPV genome, including two previously reported deletions inside the egt region. A comparative analysis between polymorphisms present in different SfMNPV isolates and our intraisolate diversity data suggests that coding regions with higher genetic diversity are associated with oral infectivity or unknown functions. In this context, through molecular evolution studies we provide evidence of diversifying selection acting on sf29, a putative collagenase which could contribute to the oral infectivity of SfMNPV. Overall, our results contribute to deepen our understanding of the coevolution between SfMNPV and the fall armyworm and will be useful to improve the applicability of this virus as a biological control agent.HighlightsWe characterized the genomic diversity within a population of SfMNPV.Coding regions with higher genetics diversity are associated with oral infectivity or unknown functions.Several structural variants contribute to the genomic diversity of SfMNPV.Sf29, a putative collagenase, shows signs of adaptive evolution.


2015 ◽  
Vol 148 (1) ◽  
pp. 112-117 ◽  
Author(s):  
Agustín Hernández-Juárez ◽  
Luis A. Aguirre-Uribe ◽  
Aideé González-Ruíz ◽  
Julio C. Chacón-Hernández ◽  
Jerónimo Landeros-Flores ◽  
...  

AbstractThe effect of the insecticide endosulfan on the predatory efficiency of the green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) on the eggs of tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae) and fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) was measured with Holling’s disc equation. Though the type II functional response was maintained in C. carnea exposed to endosulfan, the functional response parameters: attack rate (a′), handling time (Th), total handling time (Tht), searching time (Ts), and search efficiency (E) were affected for both prey offered. The predator took more time to identify, pursue, capture, consume, and digest the prey, and in general, the efficiency of the predator as a biological control agent was adversely affected.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Funda Şahin ◽  
Yusuf Yanar

Abstract Background Pathogenicity of the entomopathogenic fungi (EPF), isolated from soil samples collected from Ordu Province, Turkey, was evaluated on the second-instar larvae of the cotton leaf worm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) under laboratory conditions. Results Firstly, single-concentration response tests were conducted in order to determine the efficacy of the 64 isolates on S. littoralis larvae at the concentration of 1 × 108 conidia/ml. The five isolates displaying the highest mortality rates in single-concentration response tests, ORU-50, ORM-40, ORP-13, ORP-27 and ORM-48 (which included Beauveria bassiana, Metarhizium brunneum and Clonostachys rogersoniana), were subjected to concentration–response tests at the concentrations of 1 × 105–1 × 109 conidia/ml. The lowest LC50 and LC90 values were recorded at ORP-27 with 1.68 × 107 and 4.60 × 108 conidia/ml, respectively, followed by ORP-13 and ORM-40. Conclusions Accordingly, it was found that M. brunneum isolates were more effective than B. bassiana and C. rogersoniana against S. littoralis larvae. ORP-27, ORP-13 and ORM-40 of M. brunneum isolates can be a potential biological control agent used against S. littoralis larvae.


Sign in / Sign up

Export Citation Format

Share Document