scholarly journals Susceptibility of the fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae), to four species of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from Mizoram, North-Eastern India

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hrang Chal Lalramnghaki ◽  
Lalramliana ◽  
Hmar Tlawmte Lalremsanga ◽  
Vanlalhlimpuia ◽  
Mary Lalramchuani ◽  
...  

Abstract Background Outbreak of the fall armyworm Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) occurred in Mizoram, North-Eastern India. The infestation spread in the entire state covering a total area of around 2840 hectares of maize cultivated land. Entomopathogenic nematodes (EPNs) represent potential candidates for the biological control of S. frugiperda. In the study, the susceptibility of the pest against 4 locally isolated EPN species Heterorhabditis indica, H. baujardi, Steinernema sangi and S. surkhetense was evaluated. Results The results indicated that all the isolated EPN species showed a high rate of larvicidal and pupicidal activities against the pest. Mortality between 43.75–100.00 and 25.00–100.00% of 3rd and 5th larval instars, respectively (at concentrations 10–800 IJs/larva), and 37.50–68.75% mortality of pupae (at concentrations 200–1600 IJs /pupa) were found after exposure to the EPN species. The mortality rate of the pest showed significant variations with life stages of the host insect, nematode concentrations and incubation time. Based on the median lethal concentration (LC50), H. indica was the most pathogenic species, followed by S. sangi, H. baujardi and S. surkhetense. The LC50 values of H. indica at 72 h post-incubation were 20.26 and 62.07 IJs/larva for the 3rd and 5th larval instars, respectively, and 913.34 IJs/pupa. The penetration assay showed that H. indica had the highest penetration rate into the hosts, 27.24, 21.30 and 20.00% in the 3rd, 5th larval instars and pupae, respectively. Furthermore, all the EPN isolates were capable of successful multiplication inside the cadaver of S. frugiperda that showed significant differences with the EPN isolates and life stages of the pest. Among the isolates, H. indica showed the highest multiplication rates, 17,692.25 ± 2103.59, 8345.63 ± 785.34 and 79,146.38 ± 5943.73 IJs per 3rd instar larva, 5th instar larva and pupa, respectively. Conclusions The study revealed that the 4 species of EPNs showed a high potency against S. frugiperda, thereby having the potential to be developed as a biological control agent against the pest. Moreover, the isolated EPN species could potentially serve as alternatives for chemical insecticides and could further be incorporated into the Integrated Pest Management (IPM).

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Wandee Wattanachaiyingcharoen ◽  
Ongpo Lepcha ◽  
Apichat Vitta ◽  
Det Wattanachaiyingcharoen

Abstract Background Under laboratory and greenhouse conditions, the virulence of 2 isolates of Thai indigenous entomopathogenic nematodes (EPNs) in controlling the fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera; Noctuidae), was demonstrated. Six EPNs dosages were tested against 2 larval instars of FAW under the laboratory conditions, while 2 different concentrations were tested under the greenhouse conditions. Results The results of a laboratory experiment revealed that 2 Thai indigenous EPNs isolates (Heterorhabditis indica isolate AUT 13.2 and Steinernema siamkayai isolate APL 12.3) were efficient against the FAW, 2nd and 5th larval instars. Six different nematode concentrations (50,100, 150, 200, 250 and 300 infectious juveniles (IJs) ml−1) were evaluated, and all were proven to be effective, with the mortality rate associated with concentration. Inoculated larvae in the 2nd instar was more vulnerable than that in the 5th instar. H. indica isolate AUT 13.2 was more destructive than S. siamkayai isolate APL 12.3. The greatest mortality rate of 2nd instar larvae was 83% when H. indica AUT 13.2 was applied at the concentration of 250 IJs ml−1, and 68% when the nematode S. siamkayai APL 12.3 was used at the concentration of 300 IJs ml−1. At 250 IJsml−1, the highest mortality rate of the 5th instar larvae was 45% for H. indica AUT 13.2 and 33% for S. siamkayai APL 12.3, respectively. To customize the concentration and volume of nematodes suspension evaluated in the greenhouse settings, the most sensitive stage of FAW and the optimum concentration that caused the highest mortality were used. The concentrations of both indigenous nematodes’ isolates were 20,000 and 50,000 IJsml−1 per pot, respectively, and the results showed that the mortality rates were lower than that in the laboratory. FAW mortality rate was the highest (58%) in case of the nematode H. indica isolate AUT 13.2, against (45%) in case of S. siamkayai isolate APL 12.3, at the 50,000 IJs ml−1 concentrations. Conclusions The study revealed the 2 Thai indigenous EPNs isolates (H. indica isolate AUT 13.2 and S. siamkayai isolate APL 12.3) were capable of controlling the FAW in both laboratory and greenhouse environments. The 2 Thai EPNs showed the potential to be considered as a biological control agent.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Sharanabasappa S. Deshmukh ◽  
S. Kiran ◽  
Atanu Naskar ◽  
Palam Pradeep ◽  
C. M. Kalleshwaraswamy ◽  
...  

AbstractThe fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), has become a major threat in maize cultivation since its invasion to India in 2018. The humpbacked fly, Megaselia scalaris (Loew) (Diptera: Phoridae), was recorded as a laboratory parasitoid of FAW, for the first time in India. Initially, 30–40 maggots of M. (M) scalaris emerged out from the dead pre-pupa and pupa of laboratory-reared FAW. The fly laid up to 15 eggs on the outer surface of 6th instar larva or pre-pupa of the FAW. The incubation period was 1–2 days. The fly had 3 larval instars which lasted 3–4 days and a pupal period of 10–11 days. The adults survived for 6–7 days.


1992 ◽  
Vol 27 (4) ◽  
pp. 354-360 ◽  
Author(s):  
C. E. Rogers ◽  
O. G. Marti

The distribution of Noctuidonema guyanense Remillet and Silvain (Nematoda: Aphelenchoididae) populations on wild female, laboratory-reared female, and wild male moths of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) was determined. Populations of all life stages of N. guyanense were aggregated (P < 0.05) on abdominal segments 7–10 of wild female and moderately infested (<100 nematodes), laboratory-reared female moths. Nematodes also aggregated on abdominal segments 7–10 on heavily infested (>300 nematodes), laboratory-reared female moths, but larger populations of all mobile life stages migrated from posterior to anterior abdominal segments of a host. On wild male moths, N. guyanense populations tended to disperse along the host's abdomen, with significant aggregates of eggs and neonates on abdominal segments 8–10 and smaller aggregates of adults and juveniles on abdominal segments 1–2. Nematodes avoided colonization of the head of nearly all hosts of either sex.


2022 ◽  
Author(s):  
Indra Kumar Kasi ◽  
Mohinder Singh ◽  
Kanchhi Maya Waiba

Abstract Invasive species are a major danger to agronomic and natural ecosystems, and due to environmental concerns about pesticide use, EPNs have the potential to replace larvicidal action in pest management. The goal was to see how well local isolates of Steinernema feltiae (HR1) and Heterorhabditis bacteriophora (HR2) controlled invasive species when combined with low-toxicity pesticides. HR1 + Spinosad, chlorantraniliprole produced over 90% mortality in larvae at 96 hours, while HR2 + Spinosad, chlorantraniliprole caused over 95% mortality at 96 hours. After treatment, the high dose was regarded the least hazardous technique for controlling fall armyworm. At the high dose, HR1 + Spinosad, chlorantraniliprole produced larvae death of over 100 percent at 96 hours, and HR2 + Spinosad, chlorantraniliprole caused mortality of over 97.50 percent at 96 hours, and should be considered as a least hazardous strategy for T. absoluta management. Controlling larvae mortality of above 100% at 96 hours in combination with low-toxicity insecticide dosages should be included as a least harmful technique to control T. absoluta. The results showed that these HR2 strains have high pathogenicity against T. absoluta and S. frugiperda and have potential for control in integrated approaches, causing 100 percent and 90.00 percent mortality of T. absoluta and S. frugiperda at 96 hours at the high dose as a least toxic strategy to control.


2015 ◽  
Vol 75 (4) ◽  
pp. 989-998 ◽  
Author(s):  
L. F. Camargo ◽  
R. A. Brito ◽  
A. M. Penteado-Dias

Abstract The fall armyworm Spodoptera frugiperda (Lepidoptera; Noctuidae) is a voracious pest of numerous crops of economic importance throughout the New World. In Brazil, its larvae are attacked by several species of parasitoid wasps, making them potential candidate as biological control agents against this pest. A survey of the parasitoid fauna on S. frugiperda in maize crops throughout Brazil reveals two species of Campoletis, which are morphologicaly very similar species. In this paper we combine these data with pictures from the type material of C. sonorensis and C. flavicincta, as well as their descriptions to provide a redescription to Campoletis sonorensis (Cameron, 1886) using for this both morphological characters and DNA Barcoding (Hebert et al., 2003) information, in an attempt to help with the correct identification of the taxa to improve biological control studies.


2020 ◽  
Vol 25 (4) ◽  
pp. 649-657
Author(s):  
Jianfeng Liu ◽  
Tai-An Tian ◽  
Xue-Lin Li ◽  
Yi-Chai Chen ◽  
Xiao-Fei Yu ◽  
...  

The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), is one of the most damaging noctuid pests of maize and is reported in China at the beginning of 2019. It poses a serious threat to the food security of China. In order to find an attractive alternative to reduce the application of chemical insecticides, we screened different initial mite densities of Pyemotes zhonghuajia on the mortality rate of different stages of FAW and also recorded the number of P. zhonghuajia on FAW at the different times (24, 48, and 72 h). The results showed that initial mite densities had a significant effect on the mortality rates of all stages of FAW and the number of P. zhonghuajia found on the surface of FAW. One P. zhonghuajia female was able to significantly induce the mortality of FAW in the 1st to 3rd instar larvae, and the mite density of 40 could achieve 100% FAW mortality when added 1st to 5th instar larvae and prepupae. There was an increasing number of P. zhonghuajia on FAW from the 2nd to 4th instar larvae stages at all three days. These results provide the basic information for considering P. zhonghuajia as a suitable bio-control agent against FAW in China. 


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 868
Author(s):  
Rajendra Acharya ◽  
Hwal-Su Hwang ◽  
Md Munir Mostafiz ◽  
Yeon-Su Yu ◽  
Kyeong-Yeoll Lee

The fall armyworm, Spodoptera frugiperda, which is native to Central and South America, has recently invaded Africa and Asia, causing serious damage to various crops. Although management to date has been largely unsuccessful, entomopathogenic nematodes (EPNs) are a potential biological control agent that could be used to control the late larval and pupal stages of S. frugiperda that dwell under the ground. Here, we compared the virulence of seven EPNs against larval and pupal stages of S. frugiperda. In a Petri dish assay, both Heterorhabditis indica and Steinernema carpocapsae were highly virulent against younger larvae, whereas S. arenarium and S. longicaudum were highly virulent against older larvae. In contrast, H. bacteriophora, Heterorhabditis sp., and S. kushidai showed low virulence against all larval stages. In soil column and pot assays, H. indica, S. carpocapsae, and S. longicaudum were highly virulent against late larval and pupal stages compared with the other EPN species. Thus, H. indica, S. carpocapsae, and S. longicaudum are recommended for the biological control of S. frugiperda. Our study provides important information of EPNs for the practical application of biological control of fall armyworm.


2005 ◽  
Vol 62 (2) ◽  
pp. 190-193 ◽  
Author(s):  
Eduardo Barbosa Beserra ◽  
José Roberto Postali Parra

Egg parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) can be found in several crops attacking Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) eggs. It is therefore necessary to demonstrate the capacity of these natural enemies in suppressing populations of the pest to allow them to be used in biological control programs against that species. This work had the objective of evaluating the impact of egg layer distribution in S. frugiperda egg masses on the parasitism capacity of Trichogramma atopovirilia Oatman & Platner, 1983. Masses containing one, two, and three layers were used as treatments, and 1.6 parasitoid per egg of the pest were released. Parasitism percentage differences were observed among the three types of masses under study, on average 66.24 ± 8.56%, 45.20 ± 6.20%, and 40.10± 3.46% for egg masses with one, two, and three layers, respectively, demonstrating the potential of use of the parasitoid for the control of fall armyworm.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1074
Author(s):  
Bonoukpoè Mawuko Sokame ◽  
Boaz Musyoka ◽  
Julius Obonyo ◽  
François Rebaudo ◽  
Elfatih M. Abdel-Rahman ◽  
...  

The interactions among insect communities influence the composition of pest complexes that attack crops and, in parallel, their natural enemies, which regulate their abundance. The lepidopteran stemborers have been the major maize pests in Kenya. Their population has been regulated by natural enemies, mostly parasitoids, some of which have been used for biological control. It is not known how a new exotic invasive species, such as the fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera, Noctuidae), may affect the abundance and parasitism of the resident stemborers. For this reason, pest and parasitism surveys have been conducted, before and after the FAW invaded Kenya, in maize fields in 40 localities across 6 agroecological zones (AEZs) during the maize-growing season, as well as at 3 different plant growth stages (pre-tasseling, reproductive, and senescence stages) in 2 elevations at mid-altitude, where all maize stemborer species used to occur together. Results indicated that the introduction of the FAW significantly correlated with the reduction of the abundance of the resident communities of maize stemborers and parasitoids in maize fields; moreover, the decrease of stemborer density after the arrival of FAW occurred mostly at both reproductive and senescent maize stages. It also suggests a possible displacement of stemborers by FAW elsewhere; for example, to other cereals. However, since this study was conducted only three years after the introduction of the FAW, further studies will need to be conducted to confirm such displacements.


Sign in / Sign up

Export Citation Format

Share Document