scholarly journals Optimum conditions of killer toxins produced by Torulaspora delbrueckii and Wickerhamomyces anomalus and their action as antifungal agents

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Najwa Mohammed Jameel Ali Abu-Mejdad ◽  
Abdullah H. Al-Saadoon ◽  
Adnan I. Al-Badran ◽  
Mohammed Hussein Minati
2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Najwa Mohammed Jameel Ali Abu-Mejdad ◽  
Adnan I. Al-Badran ◽  
Abdullah H. Al-Saadoon ◽  
Mohammed Hussein Minati

Abstract Background The K1, K2, and K28 toxins are usually encoded by several cytoplasmically genetic satellite dsRNAs (M1, M2, and M28), which are encapsulated with virus-like particles (VLPs) and reliant on an additional assembly of assistant yeast viruses (L-A) for their reproduction and encapsidation. Ascomycetous yeast species that have these VLPs are especially attractive targets for finding killer toxins like proteins. This is because the organisms are known in producing a large variety of secondary metabolites and extracellular enzymes, which have medical importance as alternative drugs for resistance bacterial strains, particularly multi-resistance drugs (MRD). Results For the first time, 31 type strains of yeasts were tested for killer toxin production in Iraq via the measurement of gene expression of three killer toxin genes (M1, M2, and M28) within the mycovirus in yeasts. All the type strains gave an expression for the three killer toxins with variable levels. The highest expression was recorded for the killer toxin genes in Torulaspora delbrueckii followed by Wickerhamomyces anomalus. Determined antibacterial activity of two killer toxins appeared with high inhibition zone against pathogenic strains of bacteria. Cytotoxicity against human blood cells was not found. These results considered the first record of killer toxins isolated from type strains in Iraq. Conclusion The two typical strains Torulaspora delbrueckii and Wickerhamomyces anomalus showed the highest level of gene expression for the three killer toxins.


2020 ◽  
Vol 58 (8) ◽  
pp. 1102-1113 ◽  
Author(s):  
Miguel Fernández de Ullivarri ◽  
Gabriela A Bulacios ◽  
Silvia A Navarro ◽  
Lucía Lanza ◽  
Lucia M Mendoza ◽  
...  

Abstract Candidiasis is a group of opportunistic infections caused by yeast of the genus Candida. The appearance of drug resistance and the adverse effects of current antifungal therapies require the search for new, more efficient therapeutic alternatives. Killer yeasts have aroused as suitable candidates for mining new antifungal compounds. Killer strains secrete antimicrobial proteins named killer toxins, with promissory antifungal activity. Here we found that the killer yeast Wickerhamomyces anomalus Cf20 and its cell-free supernatant (CFS) inhibited six pathogenic strains and one collection strain of Candida spp. The inhibition is mainly mediated by secreted killer toxins and, to a lesser extent, by volatile compounds such as acetic acid and ethyl acetate. A new large killer toxin (>180 kDa) was purified, which exerted 70–74% of the total CFS anti-Candida activity, and the previously described glucanase KTCf20 was inhibitory in a lesser extent as well. In addition, we demonstrated that Cf20 possesses the genes encoding for the β-1,3-glucanases WaExg1 and WaExg2, proteins with extensively studied antifungal activity, particularly WaExg2. Finally, the 10-fold concentrated CFS exerted a high candidacidal effect at 37°C, completely inhibiting the fungal growth, although the nonconcentrated CFS (RCF 1) had very limited fungistatic activity at this temperature. In conclusion, W. anomalus Cf20 produces different low and high molecular weight compounds with anti-Candida activity that could be used to design new therapies for candidiasis and as a source for novel antimicrobial compounds as well.


Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 676
Author(s):  
Alessia Cappelli ◽  
Consuelo Amantini ◽  
Federica Maggi ◽  
Guido Favia ◽  
Irene Ricci

Wickerhamomyces anomalus strain WaF17.12 is a yeast with an antiplasmodial property based on the production of a killer toxin. For its symbiotic association with Anopheles mosquitoes, it has been proposed for the control of malaria. In an applied view, we evaluated the yeast formulation by freeze-drying WaF17.12. The study was carried out by comparing yeast preparations stored at room temperature for different periods, demonstrating that lyophilization is a useful method to obtain a stable product in terms of cell growth reactivation and maintenance of the killer toxin antimicrobial activity. Moreover, cytotoxic assays on human cells were performed, showing no effects on the cell viability and the proinflammatory response. The post-formulation effectiveness of the killer toxin and the safety tests indicate that WaF17.12 is a promising bioreagent able to impair the malaria parasite in vector mosquitoes.


2007 ◽  
Vol 21 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Gismari Miranda da Silva ◽  
Fernando Ricardo Xavier da Silveira ◽  
Maria de Fátima Costa Pires

The aim of this study was to evaluate the adherence capability to HeLa cells, the susceptibility to killer toxins and the in vitro susceptibility to antifungal agents (eTest? method - AB Biodisk, Solna, Sweden) of 9 Candida dubliniensis isolates recovered from HIV+ and AIDS patients. The adherence test was strongly positive for strain ATCC 777 and positive for all other strains. Typing by killer toxins revealed two different biotypes among the 9 isolates studied: 888 and 688. Only biotype 688 (ATCC 777) was susceptible to the K2 toxin. There was a significant inverse correlation between adherence and killer toxin susceptibility (r = -0.8525 - p = 0.0035). No strains presented resistance to fluconazole, itraconazole, ketoconazole, voriconazole, flucytosine or amphotericin-B. With the exception of ATCC 777, all the other isolates presented similar behavior.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 655
Author(s):  
Laura Giovati ◽  
Tecla Ciociola ◽  
Tiziano De Simone ◽  
Stefania Conti ◽  
Walter Magliani

Possible implications and applications of the yeast killer phenomenon in the fight against infectious diseases are reviewed, with particular reference to some wide-spectrum killer toxins (KTs) produced by Wickerhamomyces anomalus and other related species. A perspective on the applications of these KTs in the medical field is provided considering (1) a direct use of killer strains, in particular in the symbiotic control of arthropod-borne diseases; (2) a direct use of KTs as experimental therapeutic agents; (3) the production, through the idiotypic network, of immunological derivatives of KTs and their use as potential anti-infective therapeutics. Studies on immunological derivatives of KTs in the context of vaccine development are also described.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
J Gabaston ◽  
T Richard ◽  
B Biais ◽  
P Waffo-Teguo ◽  
MF Corio-Costet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document