scholarly journals How do fire behavior and fuel consumption vary between dormant and early growing season prescribed burns in the southern Appalachian Mountains?

Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Matthew C. Vaughan ◽  
Donald L. Hagan ◽  
William C. Bridges ◽  
Matthew B. Dickinson ◽  
T. Adam Coates

Abstract Background Despite the widespread use of prescribed fire throughout much of the southeastern USA, temporal considerations of fire behavior and its effects often remain unclear. Opportunities to burn within prescriptive meteorological windows vary seasonally and along biogeographical gradients, particularly in mountainous terrain where topography can alter fire behavior. Managers often seek to expand the number of burn days available to accomplish their management objectives, such as hazardous fuel reduction, control of less desired vegetation, and wildlife habitat establishment and maintenance. For this study, we compared prescribed burns conducted in the dormant and early growing seasons in the southern Appalachian Mountains to evaluate how burn outcomes may be affected by environmental factors related to season of burn. The early growing season was defined as the narrow phenological window between bud break and full leaf-out. Proportion of plot area burned, surface fuel consumption, and time-integrated thermocouple heating were quantified and evaluated to determine potential relationships with fuel moisture and topographic and meteorological variables. Results Our results suggested that both time-integrated thermocouple heating and its variability were greater in early growing season burns than in dormant season burns. These differences were noted even though fuel consumption did not vary by season of burn. The variability of litter consumption and woody fuelbed height reduction were greater in dormant season burns than in early growing season burns. Warmer air temperatures and lower fuel moisture, interacting with topography, likely contributed to these seasonal differences and resulted in more burn coverage in early growing season burns than in dormant season burns. Conclusions Dormant season and early growing season burns in southern Appalachian forests consumed similar amounts of fuel where fire spread. Notwithstanding, warmer conditions in early growing season burns are likely to result in fire spread to parts of the landscape left unburnt in dormant season burns. We conclude that early growing season burns may offer a viable option for furthering the pace and scale of prescribed fire to achieve management objectives.

FLORESTA ◽  
2013 ◽  
Vol 43 (4) ◽  
pp. 557
Author(s):  
Celso Darci Seger ◽  
Antonio Carlos Batista ◽  
Alexandre França Tetto ◽  
Ronaldo Viana Soares

As queimas controladas constituem práticas de manejo utilizadas em diferentes tipos de vegetação e difundidas em vários países. No entanto, para a realização de tais práticas com segurança e eficiência é fundamental o conhecimento do comportamento do fogo. O objetivo desse trabalho foi caracterizar o comportamento do fogo em queimas controladas de vegetação Estepe Gramíneo-Lenhosa no estado do Paraná. Para isso, foi instalado um experimento no município de Palmeira, onde 20 parcelas foram queimadas, sendo metade a favor e metade contra o vento. A carga de material combustível fino estimada foi de 2,26 kg.m-2, com teor médio de umidade de 50,45%. A quantidade de material consumido pela queima foi de 1,76 kg.m-2, com uma eficiência média de queima de 76,86%. As médias obtidas, a favor e contra o vento, foram respectivamente: velocidade de propagação do fogo de 0,049 e 0,012 m.s-1, altura das chamas de 1,34 e 0,843 m, intensidade do fogo de 210,53 e 50,68 kcal.m-1.s-1 e calor liberado de 4.067,19 e 4.508,92 kcal.m-2. Os resultados permitiram concluir que as queimas controladas em vegetação de campos naturais, realizadas dentro dos critérios estabelecidos de planos de queima, são viáveis e seguras sob o ponto de vista de perigo de incêndios.Palavras chave: Queima prescrita; material combustível; intensidade do fogo; perigo de incêndios. AbstractFire behavior of prescribed burns in grassland on Palmeira county, Paraná, Brazil. The prescribed burns are practices of management used in different types of vegetation and widespread in several countries. However, to carry out such practices safely and effectively is fundamental knowledge of fire behavior. The aim of this study was to characterize the fire behavior in controlled burning of grassland vegetation in Paraná state. For this, an experiment was conducted in Palmeira County, where 20 plots were burned, half in favor and half against the wind. The estimated fine fuel loading was 2.26 kg.m-2, with average moisture content of 50.45%. The fuel consumption by burning was 1.76 kg.m-2 with an average efficiency of burning of 76.86%. The averages, for and against the wind, were: speed of fire spread of 0.049 and 0.012 m.s-1, the flame height of 1.34 m and 0.843, fire intensity of 210.53 and 50.68 kcal.m-1.s-1 and heat released from 4,067.19 and 4,508.92 kcal.m-2. The results show that the controlled burnings of grasslands vegetation, carried out within the established criteria burning plans are feasible and safe from the aspect of fire danger.Keywords: Prescribed burns; fuel loading; fire intensity; fire risk.


Fire ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 20
Author(s):  
Christopher J. Dukes ◽  
T. Adam Coates ◽  
Donald L. Hagan ◽  
W. Michael Aust ◽  
Thomas A. Waldrop ◽  
...  

From 2001–2018, a series of fuel reduction and ecosystem restoration treatments were implemented in the southern Appalachian Mountains near Asheville, North Carolina, USA. Treatments consisted of prescribed fire (four burns), mechanical cutting of understory shrubs and mid-story trees (two cuttings), and a combination of both cutting and prescribed fire (two cuts + four burns). Soils were sampled in 2018 to determine potential treatment impacts for O horizon and mineral soil (0–10 cm depth) carbon (C) and nitrogen (N) and mineral soil calcium (Ca), magnesium (Mg), phosphorus (P), potassium (K), and pH. Results suggested that mean changes in O horizon C and N and mineral soil C, N, C:N, Ca, and P from 2001–2018 differed between the treatments, but only mineral soil C, N, C:N, and Ca displayed differences between at least one fuel reduction treatment and the untreated control. One soils-related restoration objective was mineral soil N reduction and the cut + burn treatment best achieved this result. Increased organic matter recalcitrance was another priority, but this was not obtained with any treatment. When paired with previously reported fuels and vegetation results from this site, it appeared that continued use of the cut + burn treatment may best achieve long-term management objectives for this site and other locations being managed for similar long-term restoration and fuels management objectives.


1998 ◽  
Vol 9 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Jeffrey C. Sparks ◽  
Ronald E. Masters ◽  
David M. Engle ◽  
Michael W. Palmer ◽  
George A. Bukenhofer

1995 ◽  
Vol 5 (3) ◽  
pp. 143 ◽  
Author(s):  
RS McAlpine

It has been theorized that the amount of fuel involved in a fire front can influence the rate of spread of the fire. Three data sets are examined in an attempt to prove this relationship. The first, a Canadian Forest Service database of over 400 experimental, wild, and prescribed fires showed a weak relationship in some fuel complexes. The second, a series of field experimental fires conducted to isolate the relationship, showed a small effect. The final data set, from a series of 47 small plots (3m x 3m) burned with a variety of fuel loadings, also show a weak relationship. While a relationship was shown to exist, it is debatable whether it should be included in a fire behavior prediction system. Inherent errors associated with predicting fuel consumption can be compounded, causing additional, more critical, errors with the derived fire spread rate.


2019 ◽  
Vol 65 (6) ◽  
pp. 758-766
Author(s):  
Callie J Schweitzer ◽  
Daniel C Dey ◽  
Yong Wang

AbstractStrong white oak sawtimber markets, partially attributed to the stave and cooperage industries, are encouraging forest managers to re-examine silvicultural practices for white oak (Quercus alba). We examined recruitment and retention of white oak in mixed oak–pine stands on the William B. Bankhead National Forest in northcentral Alabama. Stands were subjected to three thinning levels (residual basal areas of 75 ft2/ac, 50 ft2/ac, and no thinning) and three fire frequencies (dormant season burns of none, one, three fires) in a factorial design. Both thinning treatments reduced overstory white oak tree densities, and fire had no effect on densities. For all reproduction height classes, regardless of thinning treatment, three prescribed burns increased white oak densities; thinned and burned stands had larger white oak seedling sprouts than those thinned with no burn. However, white oak reproduction height was primarily less than 2 ft tall, and seedlings larger than 4 ft tall were reduced. Thinning with one fire resulted in the highest densities of large white oak reproduction (4 ft tall up to 1.5 in. dbh). Red maple reproduction was the dominant competitor in all treatments and is positioned to dominate the reproduction cohort without additional tending treatments.


2002 ◽  
Vol 10 (4) ◽  
pp. 714-722 ◽  
Author(s):  
Jeffrey C. Sparks ◽  
Ronald E. Masters ◽  
David M. Engle ◽  
George A. Bukenhofer

2000 ◽  
Vol 30 (11) ◽  
pp. 1830-1836 ◽  
Author(s):  
Michael D Cain ◽  
Michael G Shelton

First-year seedlings of shortleaf pine (Pinus echinata Mill.), southern red oak (Quercus falcata Michx.), and white oak (Quercus alba L.) were subjected to simulated prescribed burns during August (growing season) or January (dormant season) on an Upper Coastal Plain site in southeastern Arkansas, U.S.A. Survival and growth of resprouting rootstocks were compared with control seedlings through one growing season after burning. Although 100% of the oaks and 99% of the pines were topkilled by the fires, survival of resprouting rootstocks exceeded 95% for all three species in the year following the winter burn. No pines resprouted following the summer burn, but rootstock survival of oaks averaged >65%. Compared with controls, winter burns reduced (P < 0.01) mean height and groundline diameter (GLD) of shortleaf pine sprouts through the next growing season. For southern red oak, season of burning did not negatively affect (P > 0.05) the growth of sprouts during the year after burning. Although mean heights and GLDs of white oak sprouts versus controls were reduced (P [Formula: see text] 0.04) when means were averaged across burns, white oak sprouts on winter-burn plots were comparable in size with the control seedlings.


Forests ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 423 ◽  
Author(s):  
Andrew Whelan ◽  
Seth Bigelow ◽  
Mary Nieminen ◽  
Steven Jack

Seasonal timing of prescribed fire and alterations to the structure and composition of fuels in savannas and woodlands can release understory hardwoods, potentially resulting in a global increase of closed-canopy forest and a loss of biodiversity. We hypothesized that growing-season fire, high overstory density, and wiregrass presence in longleaf pine woodlands would reduce the number and stature of understory hardwoods, and that because evergreen hardwoods retain live leaves, dormant-season fire would reduce performance and survival of evergreen more than deciduous hardwoods. Understory hardwood survival and height were monitored over seven years in longleaf pine woodlands in southwest Georgia with a range of overstory density, groundcover composition, and season of application of prescribed fire. Hardwood stem survival decreased with increasing overstory density, and deciduous hardwoods were more abundant in the absence of wiregrass. Contrary to expectations, evergreen hardwood growth increased following dormant-season fire. Differences in hardwood stem survival and height suggest that low fire intensity in areas with low overstory density increase the risk that hardwoods will grow out of the understory. These results indicate a need for focused research into the effects of groundcover composition on hardwood stem dynamics and emphasize that adequate overstory density is important in longleaf ecosystem management.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Marcelo H. Jorge ◽  
Sara E. Sweeten ◽  
Michael C. True ◽  
Samuel R. Freeze ◽  
Michael J. Cherry ◽  
...  

Abstract Background Understanding the effects of disturbance events, land cover, and weather on wildlife activity is fundamental to wildlife management. Currently, in North America, bats are of high conservation concern due to white-nose syndrome and wind-energy development impact, but the role of fire as a potential additional stressor has received less focus. Although limited, the vast majority of research on bats and fire in the southeastern United States has been conducted during the growing season, thereby creating data gaps for bats in the region relative to overwintering conditions, particularly for non-hibernating species. The longleaf pine (Pinus palustris Mill.) ecosystem is an archetypal fire-mediated ecosystem that has been the focus of landscape-level restoration in the Southeast. Although historically fires predominately occurred during the growing season in these systems, dormant-season fire is more widely utilized for easier application and control as a means of habitat management in the region. To assess the impacts of fire and environmental factors on bat activity on Camp Blanding Joint Training Center (CB) in northern Florida, USA, we deployed 34 acoustic detectors across CB and recorded data from 26 February to 3 April 2019, and from 10 December 2019 to 14 January 2020. Results We identified eight bat species native to the region as present at CB. Bat activity was related to the proximity of mesic habitats as well as the presence of pine or deciduous forest types, depending on species morphology (i.e., body size, wing-loading, and echolocation call frequency). Activity for all bat species was influenced positively by either time since fire or mean fire return interval. Conclusion Overall, our results suggested that fire use provides a diverse landscape pattern at CB that maintains mesic, deciduous habitat within the larger pine forest matrix, thereby supporting the diverse bat community at CB during the dormant season and early spring.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Yuan Gong ◽  
Christina L. Staudhammer ◽  
Susanne Wiesner ◽  
Gregory Starr ◽  
Yinlong Zhang

Understanding plant phenological change is of great concern in the context of global climate change. Phenological models can aid in understanding and predicting growing season changes and can be parameterized with gross primary production (GPP) estimated using the eddy covariance (EC) technique. This study used nine years of EC-derived GPP data from three mature subtropical longleaf pine forests in the southeastern United States with differing soil water holding capacity in combination with site-specific micrometeorological data to parameterize a photosynthesis-based phenological model. We evaluated how weather conditions and prescribed fire led to variation in the ecosystem phenological processes. The results suggest that soil water availability had an effect on phenology, and greater soil water availability was associated with a longer growing season (LOS). We also observed that prescribed fire, a common forest management activity in the region, had a limited impact on phenological processes. Dormant season fire had no significant effect on phenological processes by site, but we observed differences in the start of the growing season (SOS) between fire and non-fire years. Fire delayed SOS by 10 d ± 5 d (SE), and this effect was greater with higher soil water availability, extending SOS by 18 d on average. Fire was also associated with increased sensitivity of spring phenology to radiation and air temperature. We found that interannual climate change and periodic weather anomalies (flood, short-term drought, and long-term drought), controlled annual ecosystem phenological processes more than prescribed fire. When water availability increased following short-term summer drought, the growing season was extended. With future climate change, subtropical areas of the Southeastern US are expected to experience more frequent short-term droughts, which could shorten the region’s growing season and lead to a reduction in the longleaf pine ecosystem’s carbon sequestration capacity.


Sign in / Sign up

Export Citation Format

Share Document