scholarly journals Bismuth nanoparticles obtained by a facile synthesis method exhibit antimicrobial activity against Staphylococcus aureus and Candida albicans

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Roberto Vazquez-Munoz ◽  
M. Josefina Arellano-Jimenez ◽  
Jose L. Lopez-Ribot

Abstract Background Bismuth compounds are known for their activity against multiple microorganisms; yet, the antibiotic properties of bismuth nanoparticles (BiNPs) remain poorly explored. The objective of this work is to further the research of BiNPs for nanomedicine-related applications. Stable Polyvinylpyrrolidone (PVP)-coated BiNPs were produced by a chemical reduction process, in less than 30 min. Results We produced stable, small, spheroid PVP-coated BiNPs with a crystalline organization. The PVP-BiNPs showed potent antibacterial activity against the pathogenic bacterium Staphylococcus aureus and antifungal activity against the opportunistic pathogenic yeast Candida albicans, both under planktonic and biofilm growing conditions. Conclusions Our results indicate that BiNPs represent promising antimicrobial nanomaterials, and this facile synthetic method may allow for further investigation of their activity against a variety of pathogenic microorganisms.

Author(s):  
Roberto Vazquez-Munoz ◽  
M. Josefina Arellano-Jimenez ◽  
Jose Lopez-Ribot

AbstractBismuth compounds are known for their activity against multiple microorganisms; yet, the antibiotic properties of bismuth nanoparticles (BiNPs) remain poorly explored. The objective of this work is to further the research of BiNPs for nanomedicine, particularly as a disinfectant and for future treatments. Stable PVP-coated BiNPs were produced by a chemical reduction process, in less than 30 minutes, in a heated alkaline glycine solution, by the chelation and reduction of the bismuth (III) ion; resulting in the generation of small, spheroid particles with a crystalline organization. We assessed the antibacterial and antifungal activity of bismuth nanoparticles. PVP-BiNPs showed potent antibacterial activity against the pathogenic bacterium Staphylococcus aureus and antifungal activity against the opportunistic pathogenic yeast Candida albicans, both under planktonic and biofilm growing conditions. Our results indicate that BiNPs represent promising antimicrobial nanomaterials, and this facile synthetic method may allow for further investigation of their activity against a variety of pathogenic microorganisms.


Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 385 ◽  
Author(s):  
Samir Jawhara

Platelets are essential for vascular repair and for the maintenance of blood homeostasis. They contribute to the immune defence of the host against many infections caused by bacteria, viruses and fungi. Following infection, platelet function is modified, and these cells form aggregates with microorganisms leading, to a decrease in the level of circulating platelets. During candidaemia, mannans, β-glucans and chitin, exposed on the cell wall of Candida albicans, an opportunistic pathogenic yeast of humans, play an important role in modulation of the host response. These fungal polysaccharides are released into the circulation during infection and their detection allows the early diagnosis of invasive fungal infections. However, their role in the modulation of the immune response and, in particular, that of platelets, is not well understood. The structure and solubility of glycans play an important role in the orientation of the immune response of the host. This short review focuses on the effect of fungal β-glucans and chitin on platelet activation and how these glycans modulate platelet activity via Toll-like receptors, contributing to the escape of C. albicans from the immune response.


2019 ◽  
Author(s):  
Jiaping Wang ◽  
Yu Liu ◽  
Guangxian Zhao ◽  
Jianyi Gao ◽  
Junlian Liu ◽  
...  

Abstract Background Candida albicans is an opportunistic pathogenic yeast, which could become pathogenic in various stressful environmental factors including the spaceflight environment. In this study, we aim to explore the phenotypic changes and possible mechanisms of Candida albicans after exposure to spaceflight conditions.Results The effect of Candida albicans after carried on the "SJ-10" satellite for 12 days was evaluated by proliferation, morphogenic, environmental resistance and virulence experiment. The result showed that the proliferation rate, biofilm formation, antioxidant capacity, cytotoxicity and filamentous morphology of Candida albicans were increased in the spaceflight group compared to the control group. Proteomics and metabolomics technologies were used to analyze the profiles of proteins and metabolites in Candida albicans under spaceflight conditions. Proteomic analysis identified 564 up-regulated proteins involved in ribosome, DNA replication, base excision repair and sulfur metabolism in the spaceflight group. And 345 down-regulated proteins related to metabolic processes were observed. The metabolomic analysis found 5 different expressed metabolites. The combined analysis of proteomic and metabolomic revealed the accumulation of cysteine and methionine in Candida albicans after spaceflight.Conclusions Mechanisms that could explain the results in the phenotyping experiment of Candida albicans were found through proteomic and metabolomic analysis. And our data provide an important basis for the assessment of the risk that Candida albicans could cause under spaceflight environment.


2020 ◽  
Author(s):  
Jiaping Wang ◽  
Yu Liu ◽  
Guangxian Zhao ◽  
Jianyi Gao ◽  
Junlian Liu ◽  
...  

Abstract Background: Candida albicans is an opportunistic pathogenic yeast, which could become pathogenic in various stressful environmental factors including the spaceflight environment. In this study, we aim to explore the phenotypic changes and possible mechanisms of C. albicans after exposure to spaceflight conditions. Results: The effect of C. albicans after carried on the "SJ-10" satellite for 12 days was evaluated by proliferation, morphology, environmental resistance and virulence experiment. The result showed that the proliferation rate, biofilm formation, antioxidant capacity, cytotoxicity and filamentous morphology of C. albicans were increased in the spaceflight group compared to the control group. Proteomics and metabolomics technologies were used to analyze the profiles of proteins and metabolites in C. albicans under spaceflight conditions. Proteomic analysis identified 548 up-regulated proteins involved in the ribosome, DNA replication, base excision repair and sulfur metabolism in the spaceflight group. Moreover, 332 down-regulated proteins related to metabolic processes were observed. The metabolomic analysis found five differentially expressed metabolites. The combined analysis of proteomic and metabolomic revealed the accumulation of cysteine and methionine in C. albicans after spaceflight. Conclusions: Mechanisms that could explain the results in the phenotypic experiment of C. albicans were found through proteomic and metabolomic analysis. And our data provide an important basis for the assessment of the risk that C. albicans could cause under spaceflight environment.


2019 ◽  
Author(s):  
Jiaping Wang ◽  
Yu Liu ◽  
Guangxian Zhao ◽  
Jianyi Gao ◽  
Junlian Liu ◽  
...  

Abstract Background: Candida albicans is an opportunistic pathogenic yeast, which could become pathogenic in various stressful environmental factors including the spaceflight environment. In this study, we aim to explore the phenotypic changes and possible mechanisms of Candida albicans after exposure to spaceflight conditions. Results: The effect of Candida albicans after carried on the "SJ-10" satellite for 12 days was evaluated by proliferation, morphology, environmental resistance and virulence experiment. The result showed that the proliferation rate, biofilm formation, antioxidant capacity, cytotoxicity and filamentous morphology of Candida albicans were increased in the spaceflight group compared to the control group. Proteomics and metabolomics technologies were used to analyze the profiles of proteins and metabolites in Candida albicans under spaceflight conditions. Proteomic analysis identified 548 up-regulated proteins involved in ribosome, DNA replication, base excision repair and sulfur metabolism in the spaceflight group. And 332 down-regulated proteins related to metabolic processes were observed. The metabolomic analysis found 5 differentially expressed metabolites. The combined analysis of proteomic and metabolomic revealed the accumulation of cysteine and methionine in Candida albicans after spaceflight. Conclusions: Mechanisms that could explain the results in the phenotypic experiment of Candida albicans were found through proteomic and metabolomic analysis. And our data provide an important basis for the assessment of the risk that Candida albicans could cause under spaceflight environment.


2019 ◽  
Vol 23 (1) ◽  
Author(s):  
Catalina Quintero-Quiroz ◽  
Natalia Acevedo ◽  
Jenniffer Zapata-Giraldo ◽  
Luz E. Botero ◽  
Julián Quintero ◽  
...  

Abstract Background Chemical reduction has become an accessible and useful alternative to obtain silver nanoparticles (AgNPs). However, its toxicity capacity depends on multiple variables that generate differences in the ability to inhibit the growth of microorganisms. Thus, optimazing parameters for the synthesis of AgNPs can increase its antimicrobial capacity by improving its physical-chemical properties. Methods In this study a Face Centered Central Composite Design (FCCCD) was carried out with four parameters: AgNO3 concentration, sodium citrate (TSC) concentration, NaBH4 concentration and the pH of the reaction with the objective of inhibit the growth of microorganisms. The response variables were the average size of AgNPs, the peak with the greatest intensity in the size distribution, the polydispersity of the nanoparticle size and the yield of the process. AgNPs obtained from the optimization were characterized physically and chemically. The antimicrobial activity of optimized AgNPs was evaluated against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans and compared with AgNPs before optimization. In addition, the cytotoxicity of the optimized AgNPs was evaluated by the colorimetric assay MTT (3- (4,5- Dimethylthiazol- 2- yl)- 2, 5 - Diphenyltetrazolium Bromide). Results It was found that the four factors studied were significant for the response variables, and a significant model (p < 0.05) was obtained for each variable. The optimal conditions were 8 for pH and 0.01 M, 0.0 6M, 0.01 M for the concentration of TSC, AgNO3, and NaBH4, respectively. Optimized AgNPs spherical and hemispherical were obtained, and 67.66% of it had a diameter less than 10.30 nm. A minimum bactericidal concentration (MBC) and minimum fungicidal Concentration (MFC) of optimized AgNPs was found against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans at 19.89, 9.94, 9.94, 2.08 μg/mL, respectively. Furthermore, the lethal concentration 50 (LC50) of optimized AgNPs was found on 19.11 μg/mL and 19.60 μg/mL to Vero and NiH3T3 cells, respectively. Conclusions It was found that the factors studied were significant for the variable responses and the optimization process used was effective to improve the antimicrobial activity of the AgNPs.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Roberto Vazquez-Muñoz ◽  
M. Josefina Arellano-Jimenez ◽  
Fernando D. Lopez ◽  
Jose L. Lopez-Ribot

Abstract Objective Silver nanoparticles (AgNPs) can be difficult or expensive to obtain or synthesize for laboratories in resource-limited facilities. The purpose of this work was to optimize a synthesis method for a fast, facile, and cost-effective synthesis of AgNPs with antimicrobial activity, which can be readily implemented in non-specialized facilities and laboratories. Results The optimized method uses a rather simple and rapid chemical reduction process that involves the addition of a polyvinylpyrrolidone solution to a warmed silver nitrate solution under constant vigorous stirring, immediately followed by the addition of sodium borohydride. The total synthesis time is less than 15 min. The obtained AgNPs exhibit an aspect ratio close to 1, with an average size of 6.18 ± 5 nm. AgNPs displayed potent antimicrobial activity, with Minimal Inhibitory Concentration values of ≤ 4 µg mL−1 for Staphylococcus aureus and ≤ 2 µg mL−1 for Candida albicans. The resulting method is robust and highly reproducible, as demonstrated by the characterization of AgNPs from different rounds of syntheses and their antimicrobial activity.


2019 ◽  
Author(s):  
Roberto Vazquez-Munoz ◽  
M. Josefina Arellano-Jimenez ◽  
Jose L. Lopez-Ribot

Abstract Objective Silver nanoparticles (AgNPs) can be difficult or expensive to obtain or synthesize for laboratories in resource-limited facilities. The purpose of this work was to create a fast, facile, and cost-effective method for synthesizing AgNPs with potent antimicrobial properties, that can be readily implemented in non-specialized laboratories.Results Our developed method uses a rather simple and rapid chemical reduction process that involves the addition of a polyvinylpyrrolidone solution to a warmed silver nitrate solution under constant vigorous stirring, immediately followed by the addition of sodium borohydride with constant stirring for an additional 15 minutes. AgNPs had an aspect ratio close to 1, with an average size of 6.18 ± 5 nm. AgNPs displayed potent antimicrobial activity, with Minimal Inhibitory Concentration values of 3 µg mL-1 and 1.5 µg mL-1 for Staphylococcus aureus and Candida albicans respectively.Keywords : Silver nanoparticles, nanoantibiotics, synthesis method, AgNPs, metallic nanoparticles


Sign in / Sign up

Export Citation Format

Share Document