scholarly journals TEM sample preparation of microsized LiMn2O4 powder using an ion slicer

2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Jung Sik Park ◽  
Yoon-Jung Kang ◽  
Sun Eui Choi ◽  
Yong Nam Jo

AbstractThe main purpose of this paper is the preparation of transmission electron microscopy (TEM) samples from the microsized powders of lithium-ion secondary batteries. To avoid artefacts during TEM sample preparation, the use of ion slicer milling for thinning and maintaining the intrinsic structure is described. Argon-ion milling techniques have been widely examined to make optimal specimens, thereby making TEM analysis more reliable. In the past few years, the correction of spherical aberration (Cs) in scanning transmission electron microscopy (STEM) has been developing rapidly, which results in direct observation at an atomic level resolution not only at a high acceleration voltage but also at a deaccelerated voltage. In particular, low-kV application has markedly increased, which requires a sufficiently transparent specimen without structural distortion during the sample preparation process. In this study, sample preparation for high-resolution STEM observation is accomplished, and investigations on the crystal integrity are carried out by Cs-corrected STEM.

2021 ◽  
Author(s):  
JungSik Park ◽  
Yoon-Jung Kang ◽  
SunEui Choi ◽  
YongNam Jo

Abstract The main purpose in this paper is a sample preparation of transmission electron microscopy (TEM) for the lithium-ion secondary battery in the form of micro-sized powders. To avoid artefacts of the TEM sample preparation, the use of ion slicer milling for thinning and maintaining the intrinsic structure is described. Argon-ion milling techniques have been widely examined to make the optimized specimen, which makes TEM analysis more reliable. In the past few years, the correction of spherical aberration (Cs) in scanning transmission electron microscopy (STEM) has been developing rapidly, that results in the direct observation with the atomic level resolution not only for the high acceleration voltage but also its deaccelerated voltage as well. Especially, low-kV application has been markedly increased that needs the sufficient-transparent specimen without the structural distortion during the process of the sample preparation. In this study, the sample preparation for the high-resolution STEM observation has been greatly accomplished and investigations of its crystal integrity are carried out by Cs-corrected STEM.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


Author(s):  
S.E. Babcock ◽  
T.F. Kelly ◽  
D.C. Larbalestier

Detailed electromagnetic characterization of samples of YBa2Cu3O7-δ (123) have shown this material, at least in its sintered form, is composed of islands of good superconductor which are separated from one another by “weak links” consisting of regions of poor superconductor or normal material. A number of researchers have suggested that these weak links are associated with grain boundaries. Therefore, conventional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) coupled with energy dispersive x-ray analysis (EDAX) have been used to investigate the morphology, crystallography, and composition of typical grain boundaries in this material.The electromagnetic properties of the specific samples from which the TEM specimens were prepared had been studied in detail. Briefly, these samples possessed relatively low normal state resistivities and nearly field independent transport critical current densities, indicating that they were of relatively high quality.For these initial studies, specimens for TEM and STEM/EDAX were prepared by dimpling plus ion milling (3-4kV, 0.5mA per gun, liquid nitrogen cooled stage).


2006 ◽  
Vol 12 (S02) ◽  
pp. 1344-1345
Author(s):  
D Williams ◽  
M Watanabe

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2006


The Analyst ◽  
2014 ◽  
Vol 139 (18) ◽  
pp. 4512-4518 ◽  
Author(s):  
Airong Liu ◽  
Wei-xian Zhang

An angstrom-resolution physical model of nanoscale zero- valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) and energy-dispersive X-ray spectroscopy (EDS).


2008 ◽  
Vol 8 (6) ◽  
pp. 3203-3207 ◽  
Author(s):  
Changjie Mao ◽  
Xingcai Wu ◽  
Jun-Jie Zhu

A large number of β-AgVO3 nanowires with diameter of 30–60 nm, and length of 1.5–3 μm have been successfully synthesized by a simple and facile low-temperature sonochemical route. The morphologies and structures of the nanowires were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning transmission electron microscopy (SEM), and thermal gravimetric analysis (TGA). Cyclic voltammetry and charge–discharge experiments were applied to characterize the electrochemical properties of the nanowires as cathode materials for lithium-ion batteries. In the initial discharge and charge process, the as-prepared β-AgVO3 nanowires showed the initial charge and discharge capacities of 69 and 102 (mAh)/g, respectively. It is anticipated that the β-AgVO3 nanostructures are promising cathode candidates in the application of primary lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document