scholarly journals Association of genetic variants with prostate cancer in Africa: a concise review

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Emmanuel Acheampong ◽  
Evans Asamoah Adu ◽  
Christian Obirikorang ◽  
George Amoah ◽  
Osei Owusu Afriyie ◽  
...  

Abstract Background Prostate cancer (PCa) has one of the highest heritability of all major cancers, where the genetic contribution has been documented, and knowledge about the molecular genetics of the disease is increasing. However, the extent and aspects to which genetic variants explain PCa heritability in Africa are limited. Main body In this review, we summarize studies that highlight how identified genetic variants explain differences in PCa incidence and presentation across ethnic groups. We also present the knowledge gaps in PCa genetics in Africa and why Africa represents an untapped potential ground for genetic studies on PCa. A significant number of genome-wide association studies, linkage, and fine-mapping analyses have been conducted globally, and that explains 30–33% of PCa heritability. The African ancestry has a significant mention in PCa incidence and presentation. To date, the candidate gene approach has replicated 23 polymorphisms including dinucleotide and trinucleotide repeats in 16 genes. CYP17-rs743572, CYP3A4-rs2740574, CYP3A5-rs776746, CYP3A43-rs501275, and haplotype blocks, containing these variants, are significantly associated with PCa among some population groups but not others. With the few existing studies, the extent of genetic diversity in Africa suggests that genetic associations of PCa to African ancestry go beyond nucleotide sequence polymorphisms, to a level of environmental adaptation, which may interpret genetic risk profiles. Also, the shreds of evidence suggest that evolutionary history contributes to the high rates of PCa relative to African ancestry, and genetic associations do not always replicate across populations. Conclusion The genetic architecture of PCa in Africa provides important contributions to the global understanding of PCa specifically the African-ancestry hypothesis. There is a need for more prostate cancer consortiums to justify the heritable certainties of PCa among Africans, and emphasis should be placed on the genetic epidemiological model of PCa in Africa.

2019 ◽  
Vol 25 (10) ◽  
pp. 2455-2467 ◽  
Author(s):  
Tim B. Bigdeli ◽  
◽  
Giulio Genovese ◽  
Penelope Georgakopoulos ◽  
Jacquelyn L. Meyers ◽  
...  

Abstract Schizophrenia is a common, chronic and debilitating neuropsychiatric syndrome affecting tens of millions of individuals worldwide. While rare genetic variants play a role in the etiology of schizophrenia, most of the currently explained liability is within common variation, suggesting that variation predating the human diaspora out of Africa harbors a large fraction of the common variant attributable heritability. However, common variant association studies in schizophrenia have concentrated mainly on cohorts of European descent. We describe genome-wide association studies of 6152 cases and 3918 controls of admixed African ancestry, and of 1234 cases and 3090 controls of Latino ancestry, representing the largest such study in these populations to date. Combining results from the samples with African ancestry with summary statistics from the Psychiatric Genomics Consortium (PGC) study of schizophrenia yielded seven newly genome-wide significant loci, and we identified an additional eight loci by incorporating the results from samples with Latino ancestry. Leveraging population differences in patterns of linkage disequilibrium, we achieve improved fine-mapping resolution at 22 previously reported and 4 newly significant loci. Polygenic risk score profiling revealed improved prediction based on trans-ancestry meta-analysis results for admixed African (Nagelkerke’s R2 = 0.032; liability R2 = 0.017; P < 10−52), Latino (Nagelkerke’s R2 = 0.089; liability R2 = 0.021; P < 10−58), and European individuals (Nagelkerke’s R2 = 0.089; liability R2 = 0.037; P < 10−113), further highlighting the advantages of incorporating data from diverse human populations.


2020 ◽  
Author(s):  
Pavel P Kuksa ◽  
Chia-Lun Lui ◽  
Wei Fu ◽  
Liming Qu ◽  
Yi Zhao ◽  
...  

Background: Alzheimer's disease (AD) genetic findings span progressively larger genome-wide association studies (GWASs) for various outcomes and populations. These genetic findings are obtained from a single GWAS, joint- or meta- analyses of multiple GWAS datasets. However, no single resource provides harmonized and searchable information on all AD genetic associations obtained from these analyses, nor linking the identified genetic variants and reported genes with other supporting functional genomic evidence. Methods: We created the Alzheimer's Disease Variant Portal (ADVP), which provides unified access to a uniquely extensive collection of high-quality GWAS association results for AD. Records in ADVP are curated from the genome-wide significant and suggestive loci reported in AD genetics literature. ADVP contains curated results from all AD GWAS publications by Alzheimer's Disease Genetics Consortium (ADGC) since 2009 and AD GWAS publications identified from other public catalogs (GWAS catalog). Genetic association information was systematically extracted from these publications, harmonized, and organized into three types of tables. These tables included structured publication, variant, and association categories to ensure consistent representation of all AD genetic findings. All extracted AD genetic associations were further annotated and integrated with NIAGADS Genomics DB in order to provide extensive biological and functional genomics annotations. Results: Currently, ADVP contains 6,990 AD-association records curated from >200 AD GWAS publications corresponding to >900 unique genomic loci and >1,800 unique genetic variants. The ADVP collection contains genetic findings from >80 cohorts and across various populations, including Caucasians, Hispanics, African-Americans, and Asians. Of all the association records, 46% are disease-risk, 13% are related to expression quantitative trait analyses, and 27% are related to AD endophenotypes and neuropathology. ADVP web interface allows accessing AD association records by individual variants, genes, publications, genomic regions of interest, and genome-wide interactive variant views. ADVP is integrated with the NIAGADS Alzheimer's Genomics Database. Researchers can explore additional biological annotations at the genetic variant or gene level and view cross-reference functional genomics evidence provided by other public resources. Conclusions: ADVP is the largest, most up-to-date, and comprehensive literature-derived collection of AD genetic associations. All records have been systematically curated, harmonized, and comprehensively annotated. ADVP is freely accessible at https://advp.niagads.org/.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 97 ◽  
Author(s):  
Ilya Y. Zhbannikov ◽  
Konstantin Arbeev ◽  
Anatoliy I. Yashin

There exists a set of web-based tools for integration and exploring information linked to annotated genetic variants. We developed haploR, an R-package for querying such web-based genome annotation tools (currently implementing on HaploReg and RegulomeDB) and gathering information in a format suitable for downstream bioinformatic analyses. This will facilitate post-genome wide association studies streamline analysis for rapid discovery and interpretation of genetic associations.


2019 ◽  
Vol 26 (34) ◽  
pp. 6207-6221 ◽  
Author(s):  
Innocenzo Rainero ◽  
Alessandro Vacca ◽  
Flora Govone ◽  
Annalisa Gai ◽  
Lorenzo Pinessi ◽  
...  

Migraine is a common, chronic neurovascular disorder caused by a complex interaction between genetic and environmental risk factors. In the last two decades, molecular genetics of migraine have been intensively investigated. In a few cases, migraine is transmitted as a monogenic disorder, and the disease phenotype cosegregates with mutations in different genes like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine, candidate genes as well as genome-wide association studies have shown that a large number of genetic variants may increase the risk of developing migraine. At present, few studies investigated the genotype-phenotype correlation in patients with migraine. The purpose of this review was to discuss recent studies investigating the relationship between different genetic variants and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in migraineurs is complicated by several confounding factors and, to date, only polymorphisms of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional genomic studies and network analyses are needed to clarify the complex pathways underlying migraine and its clinical phenotypes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuquan Rao ◽  
Yao Yao ◽  
Daniel E. Bauer

AbstractGenome-wide association studies (GWAS) have uncovered thousands of genetic variants that influence risk for human diseases and traits. Yet understanding the mechanisms by which these genetic variants, mainly noncoding, have an impact on associated diseases and traits remains a significant hurdle. In this review, we discuss emerging experimental approaches that are being applied for functional studies of causal variants and translational advances from GWAS findings to disease prevention and treatment. We highlight the use of genome editing technologies in GWAS functional studies to modify genomic sequences, with proof-of-principle examples. We discuss the challenges in interrogating causal variants, points for consideration in experimental design and interpretation of GWAS locus mechanisms, and the potential for novel therapeutic opportunities. With the accumulation of knowledge of functional genetics, therapeutic genome editing based on GWAS discoveries will become increasingly feasible.


Author(s):  
Jianhua Wang ◽  
Dandan Huang ◽  
Yao Zhou ◽  
Hongcheng Yao ◽  
Huanhuan Liu ◽  
...  

Abstract Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


The Prostate ◽  
2010 ◽  
Vol 71 (9) ◽  
pp. 955-963 ◽  
Author(s):  
Yizhen Lu ◽  
Zheng Zhang ◽  
Hongjie Yu ◽  
S. Lily Zheng ◽  
William B. Isaacs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document