scholarly journals Infrapatellar fat pad area on knee MRI: does it correlate with the extent of knee osteoarthritis?

Author(s):  
Eman Ragab ◽  
Dena Serag

Abstract Background Osteoarthritis (OA) of the knee joint is a common cause of chronic disability in older adults. During the past 10 years, the infrapatellar fat pad (IPFP) has emerged as a new player in the pathogenesis of knee OA. Its exact role in the pathogenesis of knee OA remains uncertain. While many studies focused on the detrimental effect of the chemical mediators released by IPFP and their role in the accentuation of the development of OA, only few studies elucidated the beneficial effect of IPFP maximal area as a local shock absorber protecting the adjacent articular structures from progressive damage. The aim of this study was to evaluate the relation between the IPFP maximal area and the prevalence of OA manifestations. We also studied the relation between the subcutaneous (SC) fat thicknesses on the medial aspect of the knee as a surrogate marker of body obesity and the IPFP area. Results A total of 216 knee scans for 188 adult patients (64 males and 124 females) who met the inclusion criteria were examined. They were between 45 and 66 years (mean 52.5 years). The mean IPFP area for all patients was 6.9 cm2 (± 1.6 SD) (ranged from 4.5 to 11 cm2). After adjustment for potential confounders, there was a significant negative association between IPFP area and radiographic manifestations of OA (osteophites, joint space narrowing, and grade of OA) (P value < 0.001 for each), as well as MRI manifestations of OA (cartilage defects and subchondral bone marrow lesions) (P value < 0.001 and < 0.003, respectively). There was a negative but non-significant association between IPFP area and SC fat thickness. Conclusion In our study, we found supportive evidence that IPFP maximal area is associated with fewer osteoarthritic knee changes and less cartilage damage, suggesting that it plays a protective role against the development and progression of OA. Further large-scale clinical studies are awaited to confirm the obtained results. Based on our findings, it would be recommended to avoid IPFP resection during surgery in order to maintain its protective effect.

2015 ◽  
Vol 42 (10) ◽  
pp. 1878-1884 ◽  
Author(s):  
Jingyu Cai ◽  
Jianhua Xu ◽  
Kang Wang ◽  
Shuang Zheng ◽  
Fan He ◽  
...  

Objective.The function of the infrapatellar fat pad (IPFP) in knee osteoarthritis (OA) remains uncertain. This study aimed to examine cross-sectional associations between IPFP volume and knee structures in patients with knee OA.Methods.The study included 174 patients with clinical knee OA (mean age, 55.5 yrs). Fat-suppressed 3-D T1-weighted spoiled gradient recall magnetic resonance imaging (MRI) was used to measure the IPFP and cartilage volume. T2-weighted fast spin echo MRI was used to assess cartilage defects and bone marrow lesions (BML). Radiographic knee osteophytes and joint space narrowing (JSN) were assessed using the Osteoarthritis Research Society International atlas.Results.After adjustment for potential confounders, greater IPFP volume was associated with greater tibial and patellar cartilage volume (all p < 0.05), and fewer cartilage defects at all sites (OR 0.88–0.91, all p < 0.05). IPFP volume was associated with presence of BML at lateral tibial and medial femoral sites (OR 0.88–0.91, all p < 0.05) and osteophytes at lateral tibiofemoral compartment (OR 0.88, p < 0.05). IPFP volume was not significantly associated with JSN.Conclusion.Greater IPFP volume was associated with greater knee cartilage volume and fewer structural abnormalities, suggesting a protective role of IPFP size in knee OA.


2021 ◽  
Vol 22 (17) ◽  
pp. 9215
Author(s):  
Parviz Vahedi ◽  
Rana Moghaddamshahabi ◽  
Thomas J. Webster ◽  
Ayse Ceren Calikoglu Koyuncu ◽  
Elham Ahmadian ◽  
...  

Cartilage is frequently damaged with a limited capacity for repair. Current treatment strategies are insufficient as they form fibrocartilage as opposed to hyaline cartilage, and do not prevent the progression of degenerative changes. There is increasing interest in the use of autologous mesenchymal stem cells (MSC) for tissue regeneration. MSCs that are used to treat articular cartilage defects must not only present a robust cartilaginous production capacity, but they also must not cause morbidity at the harvest site. In addition, they should be easy to isolate from the tissue and expand in culture without terminal differentiation. The source of MSCs is one of the most important factors that may affect treatment. The infrapatellar fat pad (IPFP) acts as an important reservoir for MSC and is located in the anterior compartment of the knee joint in the extra-synovial area. The IPFP is a rich source of MSCs, and in this review, we discuss studies that demonstrate that these cells have shown many advantages over other tissues in terms of ease of isolation, expansion, and chondrogenic differentiation. Future studies in articular cartilage repair strategies and suitable extraction as well as cell culture methods will extend the therapeutical application of IPFP-derived MSCs into additional orthopedic fields, such as osteoarthritis. This review provides the latest research concerning the use of IPFP-derived MSCs in the treatment of articular cartilage damage, providing critical information for the field to grow.


2014 ◽  
Vol 2 (11_suppl3) ◽  
pp. 2325967114S0015
Author(s):  
Semra Duran ◽  
Ertugrul Akşahin ◽  
Onur Kocadal ◽  
Cem Nuri Aktekin ◽  
Onur Hapa ◽  
...  

Objectives: The aim of this study was to evaluate the associations between patellar cartilage defects and body mass index (BMI), infrapatellar fat pad (IPFP) volume and age. Methods: 100 patients who met the inclusion criteria and were aged 18 to 60, were evaluated retrospectively. The BMI’s of the participants were evaluated according to their weight and height. For detecting and measuring patellar cartilage defects, axial sequences were used and sagittal sequences for were used to evaluate IPFP volumes in MRI. Results: 40 patients were found to have patellar cartilage defects. In this group, age and BMI were higher in both sexes when compared with the controls (P<0.05). The IPFP volume was lower in the group with the patellar cartilage defect when compared with the control group (P<0.05). The IPFP volume was statistically significantly lower in women (P<0.05). Conclusion: Patellar cartilage defects were found to be related to age and BMI. In women, the decrease in IPFP volume seems to be one of the causative factors for patellar cartilage defects. The effect of IPFP volume on articular cartilage in healthy people is unknown. Further studies focusing on patellofemoral cartilage damage are needed to reveal this association.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 806.1-807
Author(s):  
H. Bonakdari ◽  
G. Tardif ◽  
F. Abram ◽  
J. P. Pelletier ◽  
J. Martel-Pelletier

Background:One of the hurdles in osteoarthritis (OA) drug discovery and the improvement of therapeutic approaches is the early identification of patients who will progress. It is therefore crucial to find efficient and reliable means of screening OA progressors. Although the main risk factors, age, gender and body mass index (BMI), are important, they alone are poor predictors. However, serum factors could be potential biomarkers for early prediction of knee OA progression.Objectives:In a first step toward finding early reliable predictors of OA progressors, this study aimed to determine, in OA individuals, the optimum combination of serum levels of adipokines/related inflammatory factors, their ratios, and the three main OA risk factors for predicting knee OA infrapatellar fat pad (IPFP) volume, as this tissue has been associated with knee OA onset and progression.Methods:Serum and magnetic resonance images (MRI) were from the Osteoarthritis Initiative at baseline. Variables (48) comprised the 3 main OA risk factors (age, gender, BMI), 6 adipokines, 3 inflammatory factors, and their 36 ratios. IPFP volume was assessed on MRI with a neural network methodology. The best variables and models were identified in Total cohort (n=678), High-BMI (n=341) and Low-BMI (n=337), using an artificial intelligence selection approach: the adaptive neuro-fuzzy inference system embedded with fuzzy c-means clustering (ANFIS-FCM). Performance was validated using uncertainty analyses and statistical indices. Reproducibility was done using 80 OA patients from a clinical trial (female, n=57; male, n=23).Results:For the three groups, 8.44E+14 sub-variables were investigated and 48 models were selected. The best model for each group included five variables: the three risk factors and adipsin/C-reactive protein combined for Total cohort, adipsin/chemerin; High-BMI, chemerin/adiponectin high molecular weight; and Low-BMI, interleukin-8. Data also revealed that the main form of the ratio used for the model was justified, as the use of the inverse form slightly decreased the performance of the model in both training and testing stages. Further investigation indicated that gender improved (13-16%) the prediction results compared to the BMI-based models. For each gender, we then generated a pseudocode (an evolutionary computation equation) with the 5 variables for predicting IPFP volume. Reproducibility experiments were excellent (correlation coefficient: female 0.83, male 0.95).Conclusion:This study demonstrates, for the first time, that the combination of the serum levels of adipokines/inflammatory factors and the three main risk factors of OA could predict IPFP volume with high reproducibility, and superior performance with gender separation. By using the models for each gender and the pseudocodes for OA patients provided in this study, the next step will be to develop a predictive model for OA progressors.Acknowledgments:This work was funded by the Chair in Osteoarthritis of the University of Montreal, the Osteoarthritis Research Unit of the University of Montreal Hospital Research Centre, the Groupe de recherches des maladies rhumatismales du Québec and by ArthroLab Inc., all from Montreal, Quebec, Canada.Disclosure of Interests:Hossein Bonakdari: None declared, Ginette Tardif: None declared, François Abram Employee of: ArthroLab Inc., Jean-Pierre Pelletier Shareholder of: ArthroLab Inc., Grant/research support from: TRB Chemedica, Speakers bureau: TRB Chemedica and Mylan, Johanne Martel-Pelletier Shareholder of: ArthroLab Inc., Grant/research support from: TRB Chemedica


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Chermaine Deepa Antony ◽  
John George ◽  
Wuey Min Ng ◽  
Manimalar Selvi Naicker Subramaniam

Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa’s fat pad adjacent to anterior femoral cartilage of the knee (FNMHF) and focal cartilage abnormality in this region.Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA) sagittal and axial images of the B1 and C1 region (described later) of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF.Results. There was a significant association (p=0.00) between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%). Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells.Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory.


2014 ◽  
Vol 22 ◽  
pp. S448 ◽  
Author(s):  
F. Eymard ◽  
A. Pigenet ◽  
D. Citadelle ◽  
C-H. Flouzat Lachaniette ◽  
A. Poignard ◽  
...  

2019 ◽  
Vol 47 (12) ◽  
pp. 2927-2936 ◽  
Author(s):  
Zhenlan Fu ◽  
Xiongbo Song ◽  
Lin Guo ◽  
Liu Yang ◽  
Cheng Chen

Background: Mesenchymal stromal cell (MSC)–based therapies have emerged as a promising strategy for osteoarthritis (OA) treatment. In particular, infrapatellar fat pad (IPFP)–derived MSCs have become a good option to treat knee OA. Purpose: To investigate the influence of the local microenvironment of the knee joint, especially OA cartilage, on the bioactivities of injected/implanted IPFP MSCs. Study Design: Controlled laboratory study. Methods: Conditioned medium (CM) derived from OA cartilage fragments was collected and characterized. Donor-matched IPFP MSCs were treated with control medium (Dulbecco’s modified Eagle medium (DMEM)/F-12 or chondrogenic medium), control medium + CM, or CM alone; and a series of behaviors including the viability, migration, chondrogenic and hypertrophic differentiation, and catabolic activity of IPFP MSCs were evaluated among groups. Results: There were 14 cytokines detected in CM. CM treatment improved the viability of IPFP MSCs. CM hindered the migration of IPFP MSCs. In chondrogenic differentiation, the presence of CM increased the expression of chondrogenic markers but also enhanced the state of hypertrophy and catabolism. Conclusion: OA cartilage–secreted factors could induce chondrogenic differentiation but also resulted in negative effects including the weakened migration, increased hypertrophy, and catabolism of IPFP MSCs in vitro. Clinical Relevance: These findings provide an insight on the fate of IPFP MSCs after intra-articular injections.


2020 ◽  
Author(s):  
Dimitrios Kouroupis ◽  
Melissa A Willman ◽  
Thomas M Best ◽  
Lee D Kaplan ◽  
Diego Correa

Abstract Background: To investigate the in vitro and in vivo anti-inflammatory/anti-fibrotic capacity of IFP-MSC manufactured as 3D spheroids. According to our hypothesis, IFP-MSC do not require prior cell priming to acquire a robust immunomodulatory phenotype in vitro in order to efficiently reverse synovitis and IFP fibrosis and secondarily delay articular cartilage damage in vivo.Methods: Human IFP-MSC immunophenotype, tri-potentiality, and transcriptional profiles were assessed in 3D settings. Multiplex secretomes were assessed in IFP-MSC spheroids [Crude (non-immunoselected), CD146+ or CD146- immunoselected cells] and compared with 2D cultures with and without prior inflammatory/fibrotic cell priming. Functionally, immunopotency limiting human PBMCs proliferation and effect on stimulated synoviocytes with inflammation and fibrotic cues. Finally, spheroids were tested in vivo in a rat model of acute synovitis/fat pad fibrosis.Results: Spheroids enhanced IFP-MSC phenotypic, transcriptional and secretory immunomodulatory profiles compared to 2D cultures. Further, CD146+ IFP-MSC spheroids showed enhanced secretory and transcriptional profiles, however, not reflected in a superior capacity to suppress activated PBMC suggesting 3D environment sufficient to induce an immunomodulatory phenotype. Crude IFP-MSC spheroids modulated the molecular response of synoviocytes previously exposed to inflammatory cues. Therapeutically, IFP-MSC spheroids retained Substance P degradation potential in vivo, while effectively induced resolution of inflammation/fibrosis of synovium and fat pad, halting the articular cartilage degradation in a rat model of progressive synovitis, fat pad fibrosis and osteoarthritis.Conclusions: 3D spheroids confer IFP-MSC a reproducible and enhanced immunomodulatory effect in vitro and in vivo, circumventing the requirement of non-compliant cell priming or selection before administration, thus streamlining cell products manufacturing protocols.


Sign in / Sign up

Export Citation Format

Share Document