scholarly journals The effect of combination of functional and nonfunctional acrylic polymers on transdermal patches of : in vitro permeation, in vivo evaluation using biochemical parameters, and stability studies

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Niharika Lal ◽  
Navneet Verma

Abstract Background A double-layer transdermal drug-in-adhesive patch of carvedilol was developed using functional and nonfunctional grades of acrylic adhesives, DURO-TAK® 387-2051, DURO-TAK® 387-2510, and DURO-TAK® 87-4098. The patch was designed to provide adequate permeation of the drug up to 2 days, with effective adhesion attributes. An optimized formulation was selected, the effect of the combination was studied and a 180° peel strength test was performed to evaluate adhesive properties. Further, the patch was assessed for in vivo studies on basis of biochemical parameters, skin irritation, and stability studies. The stability study was carried out on optimized fresh (S1) and 6 months old patches stored at room, and accelerated condition (40 ± 2 °C/75 ± 5% RH) using FTIR, DSC, and SEM techniques. Result It was studied that the steady-state flux (Jss) or permeation rate of the drug through excised rat skin has relied on the nature of acrylic and the combination of acrylic polymers. The TDDS containing –OH functional group DT 387-2510 with nonfunctional pressure-sensitive adhesives (PSAs) DT 87-4098, with Span 80 as penetration enhancer exhibited maximum flux (19.12 ± 0.64 μg/cm2/h) and form homogeneous and stable blends, controlling permeation of drug at a desired steady rate for 48 h. The data obtained from in vivo studies using biochemical parameters suggested that there were no statistical differences observed in results for the control and treated group while analyzing observations for serum creatinine, glucose test, sodium test, albumin, and potassium (p > 0.05). Also, the optimized formulation showed no sign of localized reactions and was confirmed by a skin histological study indicating the formulation was safe and compatible with the skin. A significant shift of peaks was not observed in FTIR spectra and DSC thermograms of the patches after the stability period. Conclusion The investigation reveals that the drug-in-adhesive patch of carvedilol, by a combination of functional and nonfunctional PSAs, provides a good and effective option for controlled delivery of carvedilol. From our findings, it has been concluded that drug in the adhesive patch has been able to provide satisfactory adhesion, drug uniformity, drug permeation, marked positive biochemical results, and good stability.

1979 ◽  
Vol 41 (2) ◽  
pp. 403-405 ◽  
Author(s):  
K. M. Weber ◽  
D. D. Leaver ◽  
A. G. Wedd

The stability of potassium tetrathiomolybdate was studied in vitro using solutions with molybdenum, hydrogen ion and phosphate concentrations similar to those normally found in the rumen. Under these conditions K2[MoS4] hydrolysed rapidly and as a result the solution contained [MoS4]2−, [MoOS3]2−, [MoO2S2]2−, [HS]− and H2S in equilibrium. In view of this hydrolysis, in vivo studies of thiomolybdate on copper metabolism of sheep should not exclude the possibility that either sulphide or molybdate is responsible for any observed effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Agbor Esther Etengeneng ◽  
Lamye Glory Moh ◽  
Suffo Kamela Arnaud Landry

The effects of chemicals commonly used in Cameroon to eliminate slime from the flesh of the African giant land snail, Archachatina marginata, during processing on some nutritional and biochemical parameters were investigated. Groups of snails were processed with these chemicals at three different concentrations. Proximate analysis of all the treated snail groups was carried out, and groups with the highest concentration of each chemical were used to compose diets for experimental rats. Thirty weanling male Wistar albino rats ( 31.25 ± 3.09   g ) aged 21days old were distributed into four groups and fed with 10% protein based diets of A. marginata named D1 (washed with only water), D2 (lime C-treated), D3 (alum C-treated), and D4 (salt C-treated). The crude protein contents of the treated groups reduced significantly when compared with the control (CW), with lime C-treated (LC) having the least here and in crude fiber, but higher (LC, LB, and LA) in dry matter. There was a significant reduction in the crude lipid of alum C-treated (AC) and salt A-treated (SA). In vivo studies showed a general decrease in food consumption, weight gained, efficiency of feed utilization (EFU), true protein digestibility (TD) (except D2), and hematological indices (RBCs (red blood cells), PCV (packed cell volume) of the treated groups (D2, D3, D4) when compared to the control (D1). On the other hand, an increase in the relative weight of the liver (RWL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total cholesterol was observed with some of the treated diets; meanwhile, protein efficiency ratio (PER), net protein ratio (NPR), relative weight of the kidneys (RWK), HDL cholesterol, and triglycerides were not affected by these diets. These chemicals should only be used at low concentrations or not at all because of its toxicity at high concentrations.


2008 ◽  
Vol 11 (2) ◽  
pp. 32 ◽  
Author(s):  
Leonard I. Wiebe ◽  
Xiao-Hong Yang ◽  
Shradha Singh ◽  
Jim Diakur

PURPOSE. Iododeoxyuridine (IUdR) has a very short in vivo half-life and consequently achieves low target-tissue concentrations with concomitant lower efficacy than would be predicted from in vitro studies. This work reports the preparation of IUdR:?-cyclodextrin (?-CyD) inclusion complexes designed to reduce in vivo inactivation of IUdR. METHODS. IUdR was derivatized with either 1-adamantanecarbonyl chloride or 4-(1-adamantyl-carbamoyl)butanoic acid, to prepare 5’-O-(1-adamantoyl)-5-iodo-2’-deoxyuridine 1 and 5’-O-(4-(1-adamantylcarbamoyl)butoyl)-5-iodo-2’-deoxy-uridine 4, respectively. ?-CyD complexes 5 and 6 were formed by vigorous stirring of 1:1 solutions of ?-CyD and 1 or 4, respectively, in D2O under argon. Complexation was inferred from DSC, powder x-ray diffractometry and NMR spectrometry. The dissociation of 5 in water and under cholesterol challenge, and the effect of complexation on the stability of 1 was determined by incubation in plasma. RESULTS. IUdR coupling with adamantanecarbonyl chloride proceeded smoothly to afford 1 (69 %) and the di-substituted derivative, 3’,5’-di-O-(1-adamantoyl)-5-iodo-2’-deoxyuridine 2 (8 %); 4 was obtained in 42 % yield. The formation of 1:1 complexes 5 and 6 was inferred from NMR chemical shift data. In serum, 1 was 90 % hydrolyzed to IUdR in 30 min, compared to 10 % hydrolysis of 1 to IUdR when from complex 5. CONCLUSIONS. Inclusion complexes were formed between ?-CyD and adamantamine-IUdR conjugates at 1:1 molar ratios. The complex 5 was resistant to dissociation by cholesterol challenge, and 5 was more slowly converted to IUdR than non-complexed 1. In vivo studies are required to further exploit the ?-CyD inclusion complex approach for improved delivery of nucleoside derivatives.


2021 ◽  
pp. 1-15
Author(s):  
Abdullah Akram ◽  
Muhammad Khalid Khan ◽  
Barkat Ali Khan

Trichophyton rubrum (T. Rubrum) is responsible for chronic cases of dermatophytosis which have high rates of resistance to antifungal drugs worldwide. The aim of this study was to formulate an emulgel of Eugenol-Linalool for the treatment of T. Rubrum infections. The emulgel was prepared by slow emulsification method and characterized for physical examination, pH analysis, swelling index, stability studies, spreading coefficient, SEM analysis, thermal analysis and PXRD studies. In-vitro antifungal activities were performed by growing T. rubrum on specialized media in petri dishes. In-vivo antifungal activity was performed in rabbits by inducing the skin infection by application of fungal strain. Results indicated that the emulgel formulation is highly stable and the physical properties of the emulgel remained quite feasible. No deterioration was observed in the formulation and the pH remained the same as the pH of skin. The viscosity and spreadability of the emulgel remained highly compatible. The results of in vitro and in vivo studies indicated that the Eugenol and Linalool both inhibited the growth of T. rubrum. Eugenol was more effective in inhibition of zone (38±0.01 mm) of T. rubrum as compared to Linalool (32.9±0.03 mm). Similarly it was observed that when the combination of both Linalool and Eugenol was used, the growth of T. rubrum (42±0.01 mm) was significantly (P <  0.05) inhibited. It is hence concluded that the emulgel containing Eugenol and Linalool possess strong in vitro and in vivo antifungal activities against the commercial strains of anthrophilic dermophytic T. Rubrum.


2020 ◽  
Vol 134 (2) ◽  
pp. 155-167
Author(s):  
Xiao-Yu Liu ◽  
Chang-Bo Zheng ◽  
Teng Wang ◽  
Jian Xu ◽  
Meng Zhang ◽  
...  

Abstract Colorectal cancer (CRC) is the third most common malignancies in adults. Similar to other solid tumors, CRC cells show increased proliferation and suppressed apoptosis during the development and progression of the disease. Previous studies have shown that a novel tumor oncogene, spermatogenic basic helix-loop-helix transcription factor zip 1 (SPZ1), can promote proliferation. However, it is unclear whether SPZ1 plays a role in suppressing apoptosis, and the molecular mechanism behind SPZ1’s suppression of apoptosis in CRC remains unclear. Here, we found that silencing endogenous SPZ1 inhibits cell growth and induces apoptosis, and overexpression of SPZ1 promotes cell growth. These findings were corroborated by in vitro and in vivo studies. Interestingly, SPZ1 overexpressing cells were resistant to 5-fluorouracil, a drug commonly used to treat cancer. Moreover, knocking down SPZ1 led to the activation of caspase through the deregulation of Bim by ERK1/2, we found that CRC tissues had significantly higher SPZ1 and lower Bim expression, and SPZ1HBimL were associated with advanced clinical stage of CRC. Collectively, our findings demonstrate that SPZ1 contributes to tumor progression by limiting apoptosis. SPZ1 reduces apoptosis by altering the stability of Bim, suggesting SPZ1 may serve as a biomarker and therapeutic target for CRC.


2017 ◽  
Vol 4 (3) ◽  
pp. 856
Author(s):  
Yi-qing Tan ◽  
Xi-wen Zhu ◽  
Xing Lai ◽  
Jian-ping Gong ◽  
Qing-gang Yin

The infection of hepatitis B virus or hepatitis C virus (HBV / HCV) is the most common cause of the chronic liver disease. Kupffer cells (KCs), the largest number of viscera macrophages, are located in the sinusoid of the hepar and play an extremely significant role in hepatic chronic inflammation after HBV / HCV infection. KCs could affect the secretion of cytokines and the interaction among cells via a variety of signalling pathways and they could regulate the inflammatory response and immune activities as well. The activation of KCs could balance inflammation and anti-inflammation, maintaining the stability of internal environment in vivo. Studies of KCs have the significance of the understanding of pathogenic mechanisms and the access to the treatment of HBV/HCV infection. Meanwhile, such studies might help to delay the development of fibrosis, cirrhosis and even carcinoma of liver after HBV / HCV infection.


2018 ◽  
Vol 46 (sup1) ◽  
pp. 314-323 ◽  
Author(s):  
Farooq Aziz ◽  
Khizra Bano ◽  
Ahmad Hassan Siddique ◽  
Sadia Zafar Bajwa ◽  
Aalia Nazir ◽  
...  

2021 ◽  
Vol 11 (4-S) ◽  
pp. 86-100
Author(s):  
N ZAHEER AHMED ◽  
DICKY JOHN DAVIS ◽  
NOMAN ANWAR ◽  
ASIM ALI KHAN ◽  
RAM PRATAP MEENA ◽  
...  

COVID-19 was originated in Wuhan, China, in December 2019 and has been declared a pandemic disease by WHO. The number of infected cases continues unabated and so far, no specific drug approved for targeted therapy. Hence, there is a need for drug discovery from traditional medicine. Tiryaq-e-Wabai is a well-documented formulation in Unani medicine for its wide use as prophylaxis during epidemics of cholera, plague and other earlier epidemic diseases. The objective of the current study is to generate in-silico evidence and evaluate the potency of Tiryaq-e-Wabai against SARS-CoV-2 spike (S) glycoprotein and main protease (3CLpro). The structures of all phytocompounds used in this study were retrieved from PubChem database and some were built using Marvin Sketch. The protein structure of the SARS-CoV-2 S glycoprotein and 3CLpro was retrieved from the PDB ID: 6LZG and 7BQY respectively. AutoDock Vina was used to predict top ranking poses with best scores. The results of the molecular docking showed that phytocompounds of Tiryaq-e-Wabai exhibited good docking power with spike glycoprotein and 3CLpro. Among tested compounds Crocin from Zafran and Aloin A from Sibr showed strong binding to spike glycoprotein and 3CLpro respectively. Molecular dynamics simulation confirmed the stability of the S glycoprotein-Crocin and 3CLpro-Aloin A complexes. The Unani formulation Tiryaq-e-Wabai has great potential to inhibit the SARS-CoV-2, which have to be substantiated with further in-vitro and in-vivo studies. Keywords: In-silico study, SARS-CoV-2, Tiryaq-e-Wabai, Unani formulation, Crocin, Aloin A


2015 ◽  
Vol 67 (3) ◽  
pp. 405-409 ◽  
Author(s):  
Marek Bednarski ◽  
Magdalena Dudek ◽  
Joanna Knutelska ◽  
Leszek Nowiński ◽  
Jacek Sapa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document