scholarly journals Correction to: Towards estimating the economic cost of invasive alien species to African crop and livestock production

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
René Eschen ◽  
Tim Beale ◽  
J. Miguel Bonnin ◽  
Kate L. Constantine ◽  
Solomon Duah ◽  
...  
2021 ◽  
Author(s):  
Danish A. Ahmed ◽  
Emma J. Hudgins ◽  
Ross N. Cuthbert ◽  
Phillip J. Haubrock ◽  
David Renault ◽  
...  

Abstract The rate of biological invasions is growing unprecedentedly, threatening ecological and socioeconomic systems worldwide. Quantitative understandings of invasion temporal trajectories are essential to discern current and future economic impacts of invaders, and then to inform future management strategies. Here, we examine the temporal trends of cumulative invasion costs by developing and testing a novel mathematical model with a population dynamical approach based on logistic growth. This model characterises temporal cost developments into four curve types (I - IV), each with distinct mathematical and qualitative properties, allowing for the parameterization of maximum cumulative costs, carrying capacities and growth rates. We test our model using damage cost data for eight genera (Rattus, Aedes, Canis, Oryctolagus, Sturnus, Ceratitis, Sus and Lymantria) extracted from the InvaCost database – which is the most up-to-date and comprehensive global compilation of economic cost estimates associated with invasive alien species. We find fundamental differences in the temporal dynamics of damage costs among genera, indicating they depend on invasion duration, species ecology and impacted sectors of economic activity. The fitted cost curves indicate a lack of broadscale support for saturation between invader density and impact, including for Canis, Oryctolagus and Lymantria, whereby costs continue to increase with no sign of saturation. For other taxa, predicted saturations may arise from data availability issues resulting from an underreporting of costs in many invaded regions. Overall, this population dynamical approach can produce cost trajectories for additional existing and emerging species, and can estimate the ecological parameters governing the linkage between population dynamics and cost dynamics.


NeoBiota ◽  
2021 ◽  
Vol 67 ◽  
pp. 459-483 ◽  
Author(s):  
Axel Eduardo Rico-Sánchez ◽  
Phillip J. Haubrock ◽  
Ross N. Cuthbert ◽  
Elena Angulo ◽  
Liliana Ballesteros-Mejia ◽  
...  

Invasive alien species (IAS) are a leading driver of biodiversity loss worldwide, and have negative impacts on human societies. In most countries, available data on monetary costs of IAS are scarce, while being crucial for developing efficient management. In this study, we use available data collected from the first global assessment of economic costs of IAS (InvaCost) to quantify and describe the economic cost of invasions in Mexico. This description was made across a range of taxonomic, sectoral and temporal variables, and allowed us to identify knowledge gaps within these areas. Overall, costs of invasions in Mexico were estimated at US$ 5.33 billion (i.e., 109) ($MXN 100.84 billion) during the period from 1992 to 2019. Biological invasion costs were split relatively evenly between aquatic (US$ 1.16 billion; $MXN 21.95 billion) and terrestrial (US$ 1.17 billion; $MXN 22.14 billion) invaders, but semi-aquatic taxa dominated (US$ 2.99 billion; $MXN 56.57 billion), with costs from damages to resources four times higher than those from management of IAS (US$ 4.29 billion vs. US$ 1.04 billion; $MXN 81.17 billion vs $MXN 19.68 billion). The agriculture sector incurred the highest costs (US$ 1.01 billion; $MXN 19.1 billion), followed by fisheries (US$ 517.24 million; $MXN 9.79 billion), whilst most other costs simultaneously impacted mixed or unspecified sectors. When defined, costs to Mexican natural protected areas were mostly associated with management actions in terrestrial environments, and were incurred through official authorities via monitoring, control or eradication. On natural protected islands, mainly mammals were managed (i.e. rodents, cats and goats), to a total of US$ 3.99 million, while feral cows, fishes and plants were mostly managed in protected mainland areas, amounting to US$ 1.11 million in total. Pterygoplichthys sp. and Eichhornia crassipes caused the greatest reported costs in unprotected aquatic ecosystems in Mexico, and Bemisia tabaci to terrestrial systems. Although reported damages from invasions appeared to be fluctuating through time in Mexico, management spending has been increasing. These estimates, albeit conservative, underline the monetary pressure that invasions put on the Mexican economy, calling for urgent actions alongside comprehensive cost reporting in national states such as Mexico.


NeoBiota ◽  
2021 ◽  
Vol 67 ◽  
pp. 349-374 ◽  
Author(s):  
José Ricardo Pires Adelino ◽  
Gustavo Heringer ◽  
Christophe Diagne ◽  
Franck Courchamp ◽  
Lucas Del Bianco Faria ◽  
...  

Biological invasions are one of the leading causes of global environmental change and their impacts can affect biodiversity, ecosystem services, human health and the economy. Yet, the understanding on the impacts of invasive alien species is still limited and mostly related to alien species outbreaks and losses in agricultural yield, followed by the understanding of the ecological impacts on natural systems. Notably, the economic impacts of biological invasions have rarely been quantified. Brazil has at least 1214 known alien species from which 460 are recognized as invasive alien species. Still, there are no comprehensive estimates of the cost of their impact and management. Here, we aimed at filling this gap by providing a comprehensive estimate of the economic cost of biological invasions in Brazil. In order to quantify these costs for species, ecosystems and human well-being we used the InvaCost database which is the first global compilation of the economic costs of biological invasions. We found that Brazil reportedly spent a minimum of USD 105.53 billions over 35 years (1984–2019), with an average spent of USD 3.02 (± 9.8) billions per year. Furthermore, USD 104.33 billion were due to damages and losses caused by invaders, whereas only USD 1.19 billion were invested in their management (prevention, control or eradication). We also found that recorded costs were unevenly distributed across ecosystems, and socio-economic sectors, and were rarely evaluated and published. We found that the economic costs with losses and damages were substantially greater than those used for prevention, control or eradication of IAS. Since our data show costs reported in Brazil for only 16 invasive alien species, our estimates are likely a conservative minimum of the actual economic costs of biological invasions in Brazil. Taken together, they indicate that invasive alien species are an important cause of economic losses and that Brazil has mostly opted for paying for the damage incurred by biological invasions rather than investing in preventing them from happening.


NeoBiota ◽  
2021 ◽  
Vol 67 ◽  
pp. 329-348 ◽  
Author(s):  
Virginia G. Duboscq-Carra ◽  
Romina D. Fernandez ◽  
Phillip J. Haubrock ◽  
Romina D. Dimarco ◽  
Elena Angulo ◽  
...  

Invasive alien species (IAS) affect natural ecosystems and services fundamental to human well-being, human health and economies. However, the economic costs associated with IAS have been less studied than other impacts. This information can be particularly important for developing countries such as Argentina, where monetary resources for invasion management are scarce and economic costs are more impactful. The present study provides the first analysis of the economic cost of IAS in Argentina at the national level, using the InvaCost database (expanded with new data sources in Spanish), the first global compilation of the reported economic costs of invasions. We analyzed the temporal development of invasions costs, distinguishing costs according to the method reliability (i.e. reproducibility of the estimation methodology) and describing the economic costs of invasions by invaded environment, cost type, activity sector affected and taxonomic group of IAS. The total economic cost of IAS in Argentina between 1995 and 2019 was estimated at US$ 6,908 million. All costs were incurred and 93% were highly reliable. The recorded costs were mainly related to terrestrial environments and the agricultural sector, with lack of costs in other sectors, making it difficult to discuss the actual distribution of invasion costs in Argentina. Nevertheless, the reported costs of IAS in this country are very high and yet likely much underestimated due to important data gaps and biases in the literature. Considering that Argentina has an underdeveloped economy, costs associated with biological invasions should be taken into consideration for preventing invasions, and to achieve a more effective use of available resources.


NeoBiota ◽  
2021 ◽  
Vol 67 ◽  
pp. 247-266 ◽  
Author(s):  
Phillip J. Haubrock ◽  
Ross N. Cuthbert ◽  
Elena Tricarico ◽  
Christophe Diagne ◽  
Franck Courchamp ◽  
...  

Whilst the ecological impacts of invasion by alien species have been well documented, little is known of the economic costs incurred. The impacts of invasive alien species on the economy can be wide-ranging, from management costs, to loss of crops, to infrastructure damage. However, details on these cost estimates are still lacking, particularly at national and regional scales. In this study, we use data from the first global assessment of economic costs of invasive alien species (InvaCost), where published economic cost data were systematically gathered from scientific and grey literature. We aimed to describe the economic cost of invasions in Italy, one of the most invaded countries in Europe, with an estimate of more than 3,000 alien species. The overall economic cost of invasions to Italy between 1990 and 2020 was estimated at US$ 819.76 million (EUR€ 704.78 million). This cost was highest within terrestrial habitats, with considerably fewer costs being exclusively associated with aquatic habitats and management methods, highlighting a bias within current literature. There was also a clear indication of informational gaps, with only 15 recorded species with costs. Further, we observed a tendency towards particular taxonomic groups, with insect species accounting for the majority of cost estimates in Italy. Globally, invasion rates are not slowing down and the associated economic impact is thus expected to increase. Therefore, the evaluation and reporting of economic costs need to be improved across taxa, in order to mitigate and efficiently manage the impact of invasions on economies.


Author(s):  
Danish A. Ahmed ◽  
Emma J. Hudgins ◽  
Ross N. Cuthbert ◽  
Phillip J. Haubrock ◽  
David Renault ◽  
...  

AbstractThe rate of biological invasions is growing unprecedentedly, threatening ecological and socioeconomic systems worldwide. Quantitative understandings of invasion temporal trajectories are essential to discern current and future economic impacts of invaders, and then to inform future management strategies. Here, we examine the temporal trends of cumulative invasion costs by developing and testing a novel mathematical model with a population dynamical approach based on logistic growth. This model characterises temporal cost developments into four curve types (I–IV), each with distinct mathematical and qualitative properties, allowing for the parameterization of maximum cumulative costs, carrying capacities and growth rates. We test our model using damage cost data for eight genera (Rattus, Aedes, Canis, Oryctolagus, Sturnus, Ceratitis, Sus and Lymantria) extracted from the InvaCost database—which is the most up-to-date and comprehensive global compilation of economic cost estimates associated with invasive alien species. We find fundamental differences in the temporal dynamics of damage costs among genera, indicating they depend on invasion duration, species ecology and impacted sectors of economic activity. The fitted cost curves indicate a lack of broadscale support for saturation between invader density and impact, including for Canis, Oryctolagus and Lymantria, whereby costs continue to increase with no sign of saturation. For other taxa, predicted saturations may arise from data availability issues resulting from an underreporting of costs in many invaded regions. Overall, this population dynamical approach can produce cost trajectories for additional existing and emerging species, and can estimate the ecological parameters governing the linkage between population dynamics and cost dynamics.


2021 ◽  
Vol 13 (11) ◽  
pp. 6152
Author(s):  
Eunyoung Kim ◽  
Jaeyong Choi ◽  
Wonkyong Song

Invasive alien species (IAS) not only displace nearby indigenous plants and lead to habitat simplification but also cause severe economic damage by invading arable lands. IAS invasion processes involve external forces such as species characteristics, IAS assemblage traits, environmental conditions, and inter-species interactions. In this study, we analyzed the invasion processes associated with the introduction and spread of Ageratina altissima, a representative invasive plant species in South Korea. We investigated 197 vegetation quadrats (2 × 20 m) in regions bordering 47 forests in southern Seoul and Gyeonggi-do, South Korea. A total of 23 environmental variables were considered, which encompassed vegetation, topography, land use, and landscape ecology indices. The model was divided into an edge and an interior model and analyzed using logistic regression and a decision tree (DT) model. The occurrence of Ageratina altissima was confirmed in 61 sites out of a total of 197. According to our analysis, Ageratina altissima easily invaded forest edges with low density. The likelihood of its occurrence increased with lower elevation and gentler slope. In contrast, the spread of Ageratina altissima in the forest interior, especially based on seed spread and permeability, was favored by a lower elevation and gentler slopes. The analysis of Ageratina altissima settlement processes in forest edges coupled with the DT model demonstrated that land characteristics, such as the proximity to urbanized areas and the number of shrub and tree species, play a pivotal role in IAS settlement. In the forest interior, Ageratina altissima did not occur in 68 of the 71 sites where the soil drainage was under 2.5%, and it was confirmed that the tree canopy area had a significant impact on forest spread. Based on these results, it can be assumed that Ageratina altissima has spread in South Korean forests in much the same way as other naturalized species. Therefore, vegetation management strategies for naturalized species should be developed in parallel with land use management policy in regions surrounding forest edges to successfully manage and control Ageratina altissima invasion.


Sign in / Sign up

Export Citation Format

Share Document