scholarly journals Development of a novel TLR8 agonist for cancer immunotherapy

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Yuxun Wang ◽  
Heping Yang ◽  
Huanping Li ◽  
Shuda Zhao ◽  
Yikun Zeng ◽  
...  

Abstract Toll-like receptors (TLRs) are a family of proteins that recognize pathogen associated molecular patterns (PAMPs). Their primary function is to activate innate immune responses while also involved in facilitating adaptive immune responses. Different TLRs exert distinct functions by activating varied immune cascades. Several TLRs are being pursued as cancer drug targets. We discovered a novel, highly potent and selective small molecule TLR8 agonist DN052. DN052 exhibited strong in vitro cellular activity with EC50 at 6.7 nM and was highly selective for TLR8 over other TLRs including TLR4, 7 and 9. DN052 displayed excellent in vitro ADMET and in vivo PK profiles. DN052 potently inhibited tumor growth as a single agent. Moreover, combination of DN052 with the immune checkpoint inhibitor, selected targeted therapeutics or chemotherapeutic drugs further enhanced efficacy of single agents. Mechanistically, treatment with DN052 resulted in strong induction of pro-inflammatory cytokines in ex vivo human PBMC assay and in vivo monkey study. GLP toxicity studies in rats and monkeys demonstrated favorable safety profile. This led to the advancement of DN052 into phase 1 clinical trials.

2020 ◽  
Author(s):  
Yuxun Wang ◽  
Heping Yang ◽  
Huanping Li ◽  
Shuda Zhao ◽  
Yikun Zeng ◽  
...  

ABSTRACTToll-like receptors (TLRs) are a family of proteins that recognize pathogen associated molecular patterns (PAMPs). Their primary function is to activate innate immune responses while also involved in facilitating adaptive immune responses. Different TLRs exert distinct functions by activating varied immune cascades. Several TLRs are being pursued as cancer drug targets. We discovered a novel, highly potent and selective small molecule TLR8 agonist DN052. DN052 exhibited strong in vitro cellular activity with EC50 at 6.7 nM and was highly selective for TLR8 over other TLRs including TLR4, 7 and 9. The selectivity profile distinguished DN052 from all other TLR agonists currently in clinical development. DN052 displayed excellent in vitro ADMET and in vivo PK profiles. DN052 potently inhibited tumor growth as a single agent. Moreover, combination of DN052 with the immune checkpoint inhibitor, selected targeted therapeutics or chemotherapeutic drugs further enhanced efficacy of single agents. Mechanistically, treatment with DN052 resulted in strong induction of pro-inflammatory cytokines in ex vivo human PBMC assay and in vivo monkey study. GLP toxicity studies in rats and monkeys demonstrated favorable safety profile. This led to the advancement of DN052 into phase I clinical trials.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Salik Hussain ◽  
Collin G Johnson ◽  
Joseph Sciurba ◽  
Xianglin Meng ◽  
Vandy P Stober ◽  
...  

Lung disease causes significant morbidity and mortality, and is exacerbated by environmental injury, for example through lipopolysaccharide (LPS) or ozone (O3). Toll-like receptors (TLRs) orchestrate immune responses to injury by recognizing pathogen- or danger-associated molecular patterns. TLR4, the prototypic receptor for LPS, also mediates inflammation after O3, triggered by endogenous hyaluronan. Regulation of TLR4 signaling is incompletely understood. TLR5, the flagellin receptor, is expressed in alveolar macrophages, and regulates immune responses to environmental injury. Using in vivo animal models of TLR4-mediated inflammations (LPS, O3, hyaluronan), we show that TLR5 impacts the in vivo response to LPS, hyaluronan and O3. We demonstrate that immune cells of human carriers of a dominant negative TLR5 allele have decreased inflammatory response to O3 exposure ex vivo and LPS exposure in vitro. Using primary murine macrophages, we find that TLR5 physically associates with TLR4 and biases TLR4 signaling towards the MyD88 pathway. Our results suggest an updated paradigm for TLR4/TLR5 signaling.


2019 ◽  
Author(s):  
Salik Hussain ◽  
Collin G Johnson ◽  
Joseph Sciurba ◽  
Xianglin Meng ◽  
Vandy P Stober ◽  
...  

AbstractLung disease causes significant morbidity and mortality, and is exacerbated by environmental injury, e.g. through lipopolysaccharide (LPS) or ozone (O3). Toll-like receptors (TLRs) orchestrate immune responses to injury by recognizing pathogen- or danger-associated molecular patterns. TLR4, the prototypic receptor for LPS, also mediates inflammation after O3, triggered by endogenous hyaluronan. Regulation of TLR4 signaling is incompletely understood. TLR5, the flagellin receptor, is expressed in alveolar macrophages, and regulates immune responses to environmental injury. Using in vivo animal models of TLR4-mediated inflammations (LPS, O3, hyaluronan), we show that TLR5 impacts the in vivo response to LPS, hyaluronan and O3. We demonstrate that immune cells of human carriers of a dominant negative TLR5 allele have decreased inflammatory response to O3 exposure ex vivo and LPS exposure in vitro. Using primary murine macrophages, we find that TLR5 physically associates with TLR4 and biases TLR4 signaling towards the MyD88 pathway. Our results suggest an updated paradigm for TLR4/TLR5 signaling.


Author(s):  
Yu-bo Zhou ◽  
Yang-ming Zhang ◽  
Hong-hui Huang ◽  
Li-jing Shen ◽  
Xiao-feng Han ◽  
...  

AbstractHDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%–35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.


2017 ◽  
Author(s):  
Christopher J. Giuliano ◽  
Ann Lin ◽  
Joan C. Smith ◽  
Ann C. Palladino ◽  
Jason M. Sheltzer

AbstractThe Maternal Embryonic Leucine Zipper Kinase (MELK) has been identified as a promising therapeutic target in multiple cancer types. MELK over-expression is associated with aggressive disease, and MELK has been implicated in numerous cancer-related processes, including chemotherapy resistance, stem cell renewal, and tumor growth. On the basis of these findings, a MELK inhibitor is currently being tested in several clinical trials. Here, we report that cancer cell lines harboring CRISPR/Cas9-induced null mutations in MELK exhibit wild-type growthin vitro, under environmental stress, in the presence of multiple chemotherapy agents, andin vivo. By combining our MELK-knockout clones with a recently-described, highly-specific MELK inhibitor, we further demonstrate that the acute inhibition of MELK results in no specific anti-proliferative phenotype. Analysis of gene expression data from cohorts of cancer patients identifies MELK expression as a correlate of tumor mitotic activity, explaining its association with poor clinical prognosis. In total, our results demonstrate the power of CRISPR/Cas9-based genetic approaches to investigate cancer drug targets, and call into question the rationale for treating patients with anti-MELK monotherapies.


2019 ◽  
Author(s):  
Fabian Giska ◽  
Gregory B. Martin

AbstractPlant immune responses, including the production of reactive oxygen species (ROS), are triggered when pattern recognition receptors (PRR) become activated upon detection of microbe-associated molecular patterns (MAMPs). Receptor-like cytoplasmic kinases are key components of PRR-dependent signaling pathways. In tomato two such kinases, Pti1a and Pti1b, are important positive regulators of the plant immune response. However, it is unknown how these kinases control plant immunity at the molecular level, and how their activity is regulated. To investigate these issues, we used mass spectrometry to search for interactors of Pti1b in Nicotiana benthamiana leaves and identified a protein phosphatase, PP2C6. An in vitro pull-down assay and in vivo split luciferase complementation assay verified this interaction. Pti1b was found to autophosphorylate on threonine-233 and this phosphorylation was abolished in the presence of PP2C6. An arginine-to-cysteine substitution at position 240 in the Arabidopsis MARIS kinase was previously reported to convert it into a constitutive-active form. The analogous substitution in Pti1b made it resistant to PP2C6 phosphatase activity, although it still interacted with PP2C6. Treatment of N. benthamiana leaves with the MAMP flg22 induced threonine phosphorylation of Pti1b. Expression of PP2C6, but not a phosphatase-inactive variant of this protein, in N. benthamiana leaves greatly reduced ROS production in response to treatment with MAMPs flg22 or csp22. The results indicate that PP2C6 acts as a negative regulator by dephosphorylating the Pti1b kinase, thereby interfering with its ability to activate plant immune responses.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi169-vi170
Author(s):  
Vidya Gopalakrishnan ◽  
Ajay Sharma ◽  
Sreepradha Sridharan ◽  
Donghang Cheng ◽  
Juan Bournat ◽  
...  

Abstract Diffuse Intrinsic Pontine Glioma (DIPG) is an incurable pediatric brain tumor. An almost ubiquitous dominant negative mutation at lysine (K)-27 in genes encoding histone genes HIST1H3B and H3F3A found in patient tumors is a driver of DIPG development. ONC201, a small molecule DRD2 antagonist and ClpP agonist developed by Chimerix Inc, targets the unfolded protein response (UPR) and integrated stress response (ISR) signaling. It is under clinical investigation in patients with recurrent H3K27M DMGs. In adults, single agent studies have shown durable objective responses when administered orally. A multi-arm, non-randomized multi-institutional Phase I clinical trial (NCT03416530) for pediatric patients with H3K27M DMGs is open and accruing. Preliminary results suggest that the drug has a favorable safety profile and holds promise for patients with DIPGs and other midline gliomas. However, the mechanism of action of ONC201 against DIPGs warrants further study. Here, we show that ONC201 is cytotoxic to DIPGs in vitro and in vivo. RNA Seq analyses revealed cell context specific deployment of PERK-activated UPR and calcium signaling-associated RON tyrosine kinase-macrophage stimulating protein (MSP) signaling in DIPGs. Single cell proteomic assays revealed substantial heterogeneity in the sensitivity of DIPG cells to ONC201, and identified stem-like sub-populations of H3K27M DIPGs with intrinsic insensitivity to the drug. ONC201 treatment, which induces cellular stress, also sensitized DIPG cells to cytolytic activity by ex-vivo expanded and activated innate immune cells, in vitro. Ongoing in vivo experiments are expected to support a novel investigational study in patients with midline gliomas.


2019 ◽  
Vol 476 (11) ◽  
pp. 1621-1635 ◽  
Author(s):  
Fabian Giska ◽  
Gregory B. Martin

Abstract Plant immune responses, including the production of reactive oxygen species (ROS), are triggered when pattern recognition receptors (PRRs) become activated upon detection of microbe-associated molecular patterns (MAMPs). Receptor-like cytoplasmic kinases are key components of PRR-dependent signaling pathways. In tomato, two such kinases, Pti1a and Pti1b, are important positive regulators of the plant immune response. However, it is unknown how these kinases control plant immunity at the molecular level and how their activity is regulated. To investigate these issues, we used mass spectrometry to search for interactors of Pti1b in Nicotiana benthamiana leaves and identified a PP2C protein phosphatase, referred to as Pic1. An in vitro pull-down assay and in vivo split-luciferase complementation assay verified this interaction. Pti1b was found to autophosphorylate on threonine-233, and this phosphorylation was abolished in the presence of Pic1. An arginine-to-cysteine substitution at position 240 in the Arabidopsis MARIS kinase was previously reported to convert it into a constitutive-active form. The analogous substitution in Pti1b made it resistant to Pic1 phosphatase activity, although it still interacted with Pic1. Treatment of N. benthamiana leaves with the MAMP flg22 induced threonine phosphorylation of Pti1b. The expression of Pic1, but not a phosphatase-inactive variant of this protein, in N. benthamiana leaves greatly reduced ROS production in response to treatment with MAMPs flg22 or csp22. The results indicate that Pic1 acts as a negative regulator by dephosphorylating the Pti1b kinase, thereby interfering with its ability to activate plant immune responses.


2017 ◽  
Vol 215 (2) ◽  
pp. 645-659 ◽  
Author(s):  
Joanna Tober ◽  
Marijke M.W. Maijenburg ◽  
Yan Li ◽  
Long Gao ◽  
Brandon K. Hadland ◽  
...  

Hematopoietic stem cells (HSCs) mature from pre-HSCs that originate in the major arteries of the embryo. To identify HSCs from in vitro sources, it will be necessary to refine markers of HSCs matured ex vivo. We purified and compared the transcriptomes of pre-HSCs, HSCs matured ex vivo, and fetal liver HSCs. We found that HSC maturation in vivo or ex vivo is accompanied by the down-regulation of genes involved in embryonic development and vasculogenesis, and up-regulation of genes involved in hematopoietic organ development, lymphoid development, and immune responses. Ex vivo matured HSCs more closely resemble fetal liver HSCs than pre-HSCs, but are not their molecular equivalents. We show that ex vivo–matured and fetal liver HSCs express programmed death ligand 1 (PD-L1). PD-L1 does not mark all pre-HSCs, but cell surface PD-L1 was present on HSCs matured ex vivo. PD-L1 signaling is not required for engraftment of embryonic HSCs. Hence, up-regulation of PD-L1 is a correlate of, but not a requirement for, HSC maturation.


2021 ◽  
Vol 22 (7) ◽  
pp. 3483
Author(s):  
Colin Rae ◽  
Francesco Amato ◽  
Chiara Braconi

In the search for the ideal model of tumours, the use of three-dimensional in vitro models is advancing rapidly. These are intended to mimic the in vivo properties of the tumours which affect cancer development, progression and drug sensitivity, and take into account cell–cell interactions, adhesion and invasiveness. Importantly, it is hoped that successful recapitulation of the structure and function of the tissue will predict patient response, permitting the development of personalized therapy in a timely manner applicable to the clinic. Furthermore, the use of co-culture systems will allow the role of the tumour microenvironment and tissue–tissue interactions to be taken into account and should lead to more accurate predictions of tumour development and responses to drugs. In this review, the relative merits and limitations of patient-derived organoids will be discussed compared to other in vitro and ex vivo cancer models. We will focus on their use as models for drug testing and personalized therapy and how these may be improved. Developments in technology will also be considered, including the use of microfluidics, 3D bioprinting, cryopreservation and circulating tumour cell-derived organoids. These have the potential to enhance the consistency, accessibility and availability of these models.


Sign in / Sign up

Export Citation Format

Share Document