EXTH-30. HARNESSING CELLULAR STRESS FOR IMMUNE TARGETING OF DIPGS

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi169-vi170
Author(s):  
Vidya Gopalakrishnan ◽  
Ajay Sharma ◽  
Sreepradha Sridharan ◽  
Donghang Cheng ◽  
Juan Bournat ◽  
...  

Abstract Diffuse Intrinsic Pontine Glioma (DIPG) is an incurable pediatric brain tumor. An almost ubiquitous dominant negative mutation at lysine (K)-27 in genes encoding histone genes HIST1H3B and H3F3A found in patient tumors is a driver of DIPG development. ONC201, a small molecule DRD2 antagonist and ClpP agonist developed by Chimerix Inc, targets the unfolded protein response (UPR) and integrated stress response (ISR) signaling. It is under clinical investigation in patients with recurrent H3K27M DMGs. In adults, single agent studies have shown durable objective responses when administered orally. A multi-arm, non-randomized multi-institutional Phase I clinical trial (NCT03416530) for pediatric patients with H3K27M DMGs is open and accruing. Preliminary results suggest that the drug has a favorable safety profile and holds promise for patients with DIPGs and other midline gliomas. However, the mechanism of action of ONC201 against DIPGs warrants further study. Here, we show that ONC201 is cytotoxic to DIPGs in vitro and in vivo. RNA Seq analyses revealed cell context specific deployment of PERK-activated UPR and calcium signaling-associated RON tyrosine kinase-macrophage stimulating protein (MSP) signaling in DIPGs. Single cell proteomic assays revealed substantial heterogeneity in the sensitivity of DIPG cells to ONC201, and identified stem-like sub-populations of H3K27M DIPGs with intrinsic insensitivity to the drug. ONC201 treatment, which induces cellular stress, also sensitized DIPG cells to cytolytic activity by ex-vivo expanded and activated innate immune cells, in vitro. Ongoing in vivo experiments are expected to support a novel investigational study in patients with midline gliomas.

2011 ◽  
Vol 4 (4) ◽  
pp. 211
Author(s):  
Serena Meraviglia ◽  
Carmela La Mendola ◽  
Valentina Orlando ◽  
Francesco Scarpa ◽  
Giuseppe Cicero ◽  
...  

The potent anti-tumor activities of γδ T cells, their ability to produce pro-inflammatory cytokines, and their strong cytolytic activity have prompted the development of protocols in which γδ agonists or ex vivo-expanded γδ cells are administered to tumor patients. γδ T cells can be selectively activated by either synthetic phosphoantigens or by drugs that enhance their accumulation into stressed cells as aminobisphosphonates, thus offering new avenues for the development of γδ T cell-based immunotherapies. The recent development of small drugs selectively activating Vγ9Vδ2 T lymphocytes, which upregulate the endogenous phosphoantigens, has enabled the investigators to design the experimental approaches of cancer immunotherapies; several ongoing phase I and II clinical trials are focused on the role of the direct bioactivity of drugs and of adoptive cell therapies involving phosphoantigen- or aminobisphosphonate-activated Vγ9Vδ2 T lymphocytes in humans. In this review, we focus on the recent advances in the activation/expansion of γδ T cells in vitro and in vivo that may represent a promising target for the design of novel and highly innovative immunotherapy in patients with hematologic malignancies.<br />


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi187-vi187
Author(s):  
Barbara Jonchere ◽  
Jennifer Stripay ◽  
Allison Pribnow ◽  
Frederique Zindy ◽  
Jaeki Min ◽  
...  

Abstract Medulloblastoma (MB), the most common malignant pediatric brain tumor, is classified into four major molecularly and histopathologically distinct subgroups, among which MYC-driven Group 3 MBs confer a poor prognosis. The Cyclin D/CDK4/CDK6/RB pathway is frequently deregulated in MB leading to uncontrolled cell proliferation, but tumors express an intact RB protein (Northcott et al., Nature, 2017). Therefore, CDK4/6 inhibitor drugs offer a possible therapeutic approach to treat MBs. Because single agent therapy ultimately leads to drug resistance, we initiated in vitro combination drug screens to identify drug classes potentiating CDK4/6 inhibitors. We used Group 3 MB patient-derived orthotopic xenografts (PDOXs), a human cell line (HDMB03), and freshly dissociated tumor cells propagated only in the mouse brain. The drug screen included 90 compounds comprising targeted and cytotoxic drugs that are FDA approved or under active clinical investigation. Using a bioluminescence-based assay that measures ATP consumption (CellTiter-Glo) to evaluate the number of viable cells, these 90 compounds were screened in combination with a fixed concentration of ribociclib, one of the three FDA approved CDK4/6 inhibitors. The primary screen, carried out in HDMB03 cells, revealed several drugs with additive or synergistic potential when combined with ribociclib, including BET inhibitors, MEK inhibitors, PI3K/mTOR inhibitors and gemcitabine. We are currently evaluating the combination of brain penetrant compounds in Group 3 MB PDOXs. The identification of potent drug combinations should provide new therapeutic options for the treatment of Group 3 MB, one of the most difficult to treat.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3928-3928
Author(s):  
Michele Levin ◽  
Janet Ayello ◽  
Frances Zhao ◽  
Andrew Stier ◽  
Lauren Tiffen ◽  
...  

Abstract Abstract 3928 Background: NK cells play a role in reducing relapse in hematological malignancy following AlloSCT (Dunbar et al, Haematologica, 2008). NK cell limitations include lack of tumor recognition and/or limited numbers of viable and functional NK cells (Shereck/Cairo et al, Ped Bld Can, 2007). NK ACI provide safe and effective therapy against tumor relapse; yet NK cells are limited to specific cancer types and not all patients demonstrate optimal response (Ruggieri et al. Science, 2002; Ljunggren et al. Nat Rev Immuno, 2007). To circumvent these limitations, methods to expand and activate PBMNCs with genetically engineered K562 cells expressing membrane bound IL-15 and 41BB ligand (K562-mbIL15-41BBL [modK562]; Imai/Campana et al, Blood, 2005) have shown to significantly increase NK cells in number and maintain heterogeneous KIR expression (Fusaki/Campana et al BJH, 2009). We have shown that CB NK cells can be activated/expanded and exhibit enhanced cytolytic activity when cultured in a cytokines/antibody cocktail (Ayello/Cairo et al, BBMT, 2006; Exp Heme, 2009). Objective: To evaluate CBNK expansion, activation, cytolytic mechanism and function against Burkitt lymphoma (BL) tumor target and its influence on NK cell mediated in-vitro and in-vivo cytotoxicity in NOD-SCID mice following stimulation with modK562 cells (generously supplied by D.Campana, St Jude's Children's Hospital, Memphis, Tx). Methods: Following 100GY irradiation, modK562cells were incubated 1:1 with CBMNCs in RPMI+IL-2 (10IU/ml) for 7 days in 5%CO2, 37°C. NK activation marker (LAMP-1), perforin and granzyme B were determined by flow cytometry. Cytotoxicty was determined via europium assay at 20:1 E:T ratio with Ramos (BL) tumor targets (ATCC). The mammalian expression construct (ffLucZeo-pcDNA (generously supplied by L.Cooper, MD, PhD) was transfected to BL cells using lipofectin and selected by zeocin for stable transfection. Six week old NOD-SCID mice received 5×106 BL cells subcutaneously. Upon engraftment, xenografted NOD-SCID mice were divided in 5 groups: injected with PBS (control), BL only, 5×106 wildtype (WT) K562 expanded (E) CBNK cells, modK562 expanded (E) CB NK cells (5×106) and modK562 expanded (E) CBNK cells (5×107). Ex-vivo ECBNK cells were injected weekly for 5 weeks and xenografted NOD-SCID mice were monitored by volumetric measurement of tumor size (Tomayko/Reynolds, Can Chemother Pharmac, 1989), bioluminescent imaging (Inoue et al Exp Heme, 2007) and survival. The survival distribution for each group was estimated using the Fisher exact test. Results: On Day 0, NK cells (CD56+/3-) population was 3.9±1.3%. After 7 days, modK562 expanded CBNK cells was significantly increased compared to WTK562 and media alone (72±3.9 vs 43±5.9 vs 9±2.4%, p<0.01). This represented a 35-fold or 3374±385% increase of the input NK cell number. This was significantly increased compared to WTK562 (1771±300%, p<0.05). ModK562 ECBNK cells demonstrated increased perforin and granzyme B expression compared to WTK562 (42±1.5 vs 15±0.5%,p<0.001; 22±0.5 vs 11±0.3%,p<0.001, respectively). Cytotoxicity was against BL tumor targets was significantly increased (42±3 vs 18±2%,p<0.01), along with NK activation marker expression, CD107a (p<0.05). At 5 weeks, in-vivo studies demonstrated increased survival of NOD-SCID mice receiving both 5×106 and 5×107 modK562 ECBNK cells when compared to those with no treatment (p=0.05, p=0.0007, respectively). There was no difference in survival when comparing mice that received 5×106 vs 5×107 modK562 ECBNK cells (p=0.0894) at 5 weeks. Tumor volume of mice receiving either dose of modK562 ECBNK cells was significantly less than those receiving WTK562 ECBNK cells (1.92±0.57 and 0.37±0.05 vs 3.41±0.25, p=0.0096 and p=0.0001, respectively). Conclusions: CBMNCs stimulated and expanded with modK562 cells results in significant expansion of CBNK cells with enhanced in-vitro cytotoxicity, significant receptor expression of NK activation marker (LAMP-1), and perforin and granzyme B. Furthermore, modK562 ECBNK cells leads to increased survival and lower tumor burden of NOD-SCID mice xenografted with BL. Future directions include modK562 ECBNK cells to be genetically modified to express chimeric antigen receptor CD20 (MSCV-antiCD20-41BB-CD3 ζ) against CD20+ hematologic malignancies for future studies to evaluate whether targeting enhances in-vitro and in-vivo cytotoxicity. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Yuxun Wang ◽  
Heping Yang ◽  
Huanping Li ◽  
Shuda Zhao ◽  
Yikun Zeng ◽  
...  

ABSTRACTToll-like receptors (TLRs) are a family of proteins that recognize pathogen associated molecular patterns (PAMPs). Their primary function is to activate innate immune responses while also involved in facilitating adaptive immune responses. Different TLRs exert distinct functions by activating varied immune cascades. Several TLRs are being pursued as cancer drug targets. We discovered a novel, highly potent and selective small molecule TLR8 agonist DN052. DN052 exhibited strong in vitro cellular activity with EC50 at 6.7 nM and was highly selective for TLR8 over other TLRs including TLR4, 7 and 9. The selectivity profile distinguished DN052 from all other TLR agonists currently in clinical development. DN052 displayed excellent in vitro ADMET and in vivo PK profiles. DN052 potently inhibited tumor growth as a single agent. Moreover, combination of DN052 with the immune checkpoint inhibitor, selected targeted therapeutics or chemotherapeutic drugs further enhanced efficacy of single agents. Mechanistically, treatment with DN052 resulted in strong induction of pro-inflammatory cytokines in ex vivo human PBMC assay and in vivo monkey study. GLP toxicity studies in rats and monkeys demonstrated favorable safety profile. This led to the advancement of DN052 into phase I clinical trials.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Yuxun Wang ◽  
Heping Yang ◽  
Huanping Li ◽  
Shuda Zhao ◽  
Yikun Zeng ◽  
...  

Abstract Toll-like receptors (TLRs) are a family of proteins that recognize pathogen associated molecular patterns (PAMPs). Their primary function is to activate innate immune responses while also involved in facilitating adaptive immune responses. Different TLRs exert distinct functions by activating varied immune cascades. Several TLRs are being pursued as cancer drug targets. We discovered a novel, highly potent and selective small molecule TLR8 agonist DN052. DN052 exhibited strong in vitro cellular activity with EC50 at 6.7 nM and was highly selective for TLR8 over other TLRs including TLR4, 7 and 9. DN052 displayed excellent in vitro ADMET and in vivo PK profiles. DN052 potently inhibited tumor growth as a single agent. Moreover, combination of DN052 with the immune checkpoint inhibitor, selected targeted therapeutics or chemotherapeutic drugs further enhanced efficacy of single agents. Mechanistically, treatment with DN052 resulted in strong induction of pro-inflammatory cytokines in ex vivo human PBMC assay and in vivo monkey study. GLP toxicity studies in rats and monkeys demonstrated favorable safety profile. This led to the advancement of DN052 into phase 1 clinical trials.


Cell Research ◽  
2021 ◽  
Author(s):  
Bingqing Xia ◽  
Xurui Shen ◽  
Yang He ◽  
Xiaoyan Pan ◽  
Feng-Liang Liu ◽  
...  

AbstractCytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1220
Author(s):  
Tobey J. MacDonald ◽  
Jingbo Liu ◽  
Bing Yu ◽  
Anshu Malhotra ◽  
Jenny Munson ◽  
...  

Sonic hedgehog subtype of medulloblastoma (SHH MB) with metastasis or specific clinical or molecular alteration shas a poor prognosis and current therapy results in long-term cognitive impairment in the majority of survivors. Thus, a great need exists for new targeted therapeutic approaches to more effectively treat SHH MB in children. Imipramine blue (IB), a novel molecule with anti-tumor properties, inhibits the NADPH oxidase (NOX) family of enzymes, which are critical for SHH MB survival and treatment resistance. In this study, IB was encapsulated within a liposome to form a liposomal nanoparticle, Liposome-IB (Lipo-IB). This complex has the ability to cross the blood–brain barrier and be preferentially taken up by tumor cells within the brain. We demonstrated in vitro that Lipo-IB treatment caused a dose-dependent decrease in SHH MB cell viability and migration. Short-term administration of single agent Lipo-IB treatment of SHH MB in vivo significantly inhibited tumor growth, reduced the tumor volume, including a complete tumor response, and improved survival compared to control treated mice, without any observable toxicity. We conclude that Lipo-IB is a potential novel nanoparticle-based therapeutic for the treatment of SHH MB that warrants further preclinical safety and efficacy testing for development towards clinical investigation.


2019 ◽  
Author(s):  
Oge Arum

Tailskin fibroblasts from multiple genotypes of slow aging mice have been shown to be resistant to a broad spectrum of toxicants. The molecular determinants for this in vitro effect, as well as for the delayed/ decelerated senescence of these mice, are uncertain. Here, we have extended this phenomenon of in vitro cellular stress resistance to neurons derived from the cerebral cortex of the Snell Dwarf Mouse. We further investigated the role of the transcription factor FoxO3a and the protein deacetylase SirT1, proteins known to positively mediate cellular stress-resistance, in this paradigm. We found that Snell Dwarfs have a greater proportion of nuclear-localized FoxO3a within their cerebrums than their littermate controls and that the same is true for their unstressed fibroblasts in vitro; yet, Snell Dwarf fibroblasts did not differ in FoxO3a properties in response to the application of three different concentrations of two disparate stresses. Similar results were obtained for SirT1, although SirT1 content did increase under the mild cellular stress of serum deprivation. Taken together, these results depict stress resistance in non-fibroblast cell types of incontrovertible physiological import explanted from slow aging mice. Also, these results strongly suggest that neither FoxO3a nor SirT1 robustly regulate the stress-resistance of Snell Dwarf Mouse cells in vitro, and thus might not play a role in other slow aging mammalian in vitro models in which stress resistance has been documented. That cerebral neurons ex vivo and unstressed fibroblasts in vitro display FoxO3a concentrations suggestive of increased activity introduce the possibility that FoxO3a might partially mediate the in vivo retardation of senescence of these mice.


2020 ◽  
Vol 8 (2) ◽  
pp. e001560
Author(s):  
Michael John Zobel ◽  
Abigail K Zamora ◽  
Hong-wei Wu ◽  
Jianping Sun ◽  
Danny Lascano ◽  
...  

BackgroundImmunotherapy with anti-disialoganglioside dinutuximab has improved survival for children with high-risk neuroblastoma (NB) when given after induction chemotherapy and surgery. However, disease recurrence and resistance persist. Dinutuximab efficacy has not been evaluated when initiated before primary tumor removal. Using a surgical mouse model of human NB, we examined if initiating dinutuximab plus ex vivo-activated natural killer (aNK) cells before resection of the primary tumor improves survival.MethodsIn vitro, human NB cells (SMS-KCNR-Fluc, CHLA-255-Fluc) were treated with dinutuximab and/or aNK cells and cytotoxicity was measured. In vivo, NB cells (SMS-KCNR-Fluc, CHLA-255-Fluc, or COG-N-415x PDX) were injected into the kidney of NOD-scid gamma mice. Mice received eight intravenous infusions of aNK cells plus dinutuximab beginning either 12 days before or 2 days after resection of primary tumors. Tumors in control mice were treated by resection alone or with immunotherapy alone. Disease was quantified by bioluminescent imaging and survival was monitored. aNK cell infiltration into primary tumors was quantified by flow cytometry and immunohistochemistry at varying timepoints.ResultsIn vitro, aNK cells and dinutuximab were more cytotoxic than either treatment alone. In vivo, treatment with aNK cells plus dinutuximab prior to resection of the primary tumor was most effective in limiting metastatic disease and prolonging survival. aNK cell infiltration into xenograft tumors was observed after 1 day and peaked at 5 days following injection.ConclusionDinutuximab plus aNK cell immunotherapy initiated before resection of primary tumors decreases disease burden and prolongs survival in an experimental mouse model of NB. These findings support the clinical investigation of this treatment strategy during induction therapy in patients with high-risk NB.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5142-5142
Author(s):  
Armelle Goubard ◽  
Martine Humbert ◽  
Colin Mansfield ◽  
Olivier Hermine ◽  
Patrice Dubreuil ◽  
...  

AB8939 is a novel, synthesized, small-molecule microtubule-destabilizer drug with proven prolific and potent in vitro activity against numerous cancer cell lines. In vitro and ex vivo studies (reported separately) have determined that AB8939 is well-suited for the treatment of hematopoietic tumors, in particular relapsed/refractory or poor-prognosis acute myeloid leukemia (AML), notably being able to circumvent two major resistance mechanisms associated with AML (i.e. P-glycoprotein and myeloperoxidase-mediated resistance). The therapeutic potential of AB8939 was investigated further through a series of in vivo experiments using three patient derived xenograft (PDX) mouse models and a cytarabine (Ara-C) resistant mouse model (MOLM14). MOLM14 cells and selected PDX primary cells were transduced to constitutively express luciferase for bioluminescence monitoring of tumor growth. In an Ara-C-sensitive AML PDX mouse model (ex vivo IC50 response to Ara-C in survival/proliferation assays was 0.82 µM), AB8939 (6 mg/kg in weekly cycles of 5 consecutive days) showed a statistically significant, 10-fold decrease in the amount of blasts detected in blood following 14 days of treatment compared with control, and a superior treatment effect compared with Ara-C (single cycle of 10 mg/kg twice per day for 4 consecutive days) in terms of decreased blasts in blood. In an Ara-C-refractory AML PDX mouse model (ex vivo IC50 response to Ara-C in survival/proliferation assays was 6.4 µM), animals treated with single agent AB8939 (6 mg/kg in weekly cycles of 5 consecutive days) showed reduced disease progression compared with control and Ara-C (single cycle of 10 mg/kg twice per day for 4 consecutive days) as evidenced from at least 10-times fewer blasts in blood, spleen and bone marrow following 28 days of treatment. This effect was even more pronounced for the combination treatment of AB8939 and Ara-C, suggesting a synergistic response. In a PDX mouse model that is highly resistant to Ara-C (ex vivo IC50 response to Ara-C in survival/proliferation assays was 8.3 µM), AB8939 as a single agent or in combination with Ara-C showed a significant (P <0.001) decrease in tumor growth and reduction of blasts in blood with respect to Ara-C and control, following 27 days of treatment (8 animals per group). This improvement translated to survival benefit, with the single agent AB8939 cohort having a median survival of 89 days compared with 69 days and 65.5 days in the control and Ara-C cohorts, respectively. Indeed, all animals treated with single agent AB8939 were still alive at D83 post injection, which was 30 days after treatment was stopped. AB8939 as a single agent was well-tolerated with no toxicity-related deaths or impact on body weight. A greater treatment effect was again observed for the AB8939 plus Ara-C combination; however, clear signs of higher toxicity mean it will be imperative to optimize dosage of both AB8939 and Ara-C if used in combination. For the well-established xenografted MOLM14 mouse model, immune-deficient NSG (NOD scid gamma) mice (5 animals per group) were injected intravenously with MOLM14-luciferase cells and treated over a period of 21 days with single agent AB8939 (subcutaneous injection) at a dosage of 6 mg/kg every day or 12 mg/kg every other day; Ara-C (intraperitoneal injection, single cycle of 10 mg/kg twice per day for 4 consecutive days); or vehicle. AB8939 caused a significant dose-dependent reduction in tumor volume (p=0.001) and increased survival with respect to control or single agent Ara-C (median survival at 6 and 12 mg/kg was 39 and 42 days, respectively, corresponding to a 60% improvement compared with the control and Ara-C groups). A similar dosing schedule study showed single agent AB8939 at 6 mg/kg administered over 6 consecutive days (6 ON/1 OFF) was optimal with this cohort having a median survival of 59 days, corresponding to a 100% improvement over control. Overall, these in vivo data provide compelling proof-of-concept for AB8939 as a treatment of AML. AB8939 administered alone or in combination with Ara-C was demonstrated to significantly increase survival and reduce tumor growth as compared with single agent Ara-C in relevant animal models of AML. A first in human, phase 1 trial evaluating AB8939 in AML patients unfit to receive intensive chemotherapy in second and third-line has been initiated. Disclosures Goubard: AB Science: Employment. Humbert:AB Science: Employment. Mansfield:AB Science: Employment, Patents & Royalties. Hermine:AB Science: Membership on an entity's Board of Directors or advisory committees. Dubreuil:AB Science: Employment, Membership on an entity's Board of Directors or advisory committees, Research Funding. AB8939 Study Group:AB Science: Consultancy, Employment.


Sign in / Sign up

Export Citation Format

Share Document