scholarly journals Development of A Novel Highly Selective TLR8 Agonist for Cancer Immunotherapy

2020 ◽  
Author(s):  
Yuxun Wang ◽  
Heping Yang ◽  
Huanping Li ◽  
Shuda Zhao ◽  
Yikun Zeng ◽  
...  

ABSTRACTToll-like receptors (TLRs) are a family of proteins that recognize pathogen associated molecular patterns (PAMPs). Their primary function is to activate innate immune responses while also involved in facilitating adaptive immune responses. Different TLRs exert distinct functions by activating varied immune cascades. Several TLRs are being pursued as cancer drug targets. We discovered a novel, highly potent and selective small molecule TLR8 agonist DN052. DN052 exhibited strong in vitro cellular activity with EC50 at 6.7 nM and was highly selective for TLR8 over other TLRs including TLR4, 7 and 9. The selectivity profile distinguished DN052 from all other TLR agonists currently in clinical development. DN052 displayed excellent in vitro ADMET and in vivo PK profiles. DN052 potently inhibited tumor growth as a single agent. Moreover, combination of DN052 with the immune checkpoint inhibitor, selected targeted therapeutics or chemotherapeutic drugs further enhanced efficacy of single agents. Mechanistically, treatment with DN052 resulted in strong induction of pro-inflammatory cytokines in ex vivo human PBMC assay and in vivo monkey study. GLP toxicity studies in rats and monkeys demonstrated favorable safety profile. This led to the advancement of DN052 into phase I clinical trials.

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Yuxun Wang ◽  
Heping Yang ◽  
Huanping Li ◽  
Shuda Zhao ◽  
Yikun Zeng ◽  
...  

Abstract Toll-like receptors (TLRs) are a family of proteins that recognize pathogen associated molecular patterns (PAMPs). Their primary function is to activate innate immune responses while also involved in facilitating adaptive immune responses. Different TLRs exert distinct functions by activating varied immune cascades. Several TLRs are being pursued as cancer drug targets. We discovered a novel, highly potent and selective small molecule TLR8 agonist DN052. DN052 exhibited strong in vitro cellular activity with EC50 at 6.7 nM and was highly selective for TLR8 over other TLRs including TLR4, 7 and 9. DN052 displayed excellent in vitro ADMET and in vivo PK profiles. DN052 potently inhibited tumor growth as a single agent. Moreover, combination of DN052 with the immune checkpoint inhibitor, selected targeted therapeutics or chemotherapeutic drugs further enhanced efficacy of single agents. Mechanistically, treatment with DN052 resulted in strong induction of pro-inflammatory cytokines in ex vivo human PBMC assay and in vivo monkey study. GLP toxicity studies in rats and monkeys demonstrated favorable safety profile. This led to the advancement of DN052 into phase 1 clinical trials.


Author(s):  
Yu-bo Zhou ◽  
Yang-ming Zhang ◽  
Hong-hui Huang ◽  
Li-jing Shen ◽  
Xiao-feng Han ◽  
...  

AbstractHDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%–35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.


2017 ◽  
Author(s):  
Christopher J. Giuliano ◽  
Ann Lin ◽  
Joan C. Smith ◽  
Ann C. Palladino ◽  
Jason M. Sheltzer

AbstractThe Maternal Embryonic Leucine Zipper Kinase (MELK) has been identified as a promising therapeutic target in multiple cancer types. MELK over-expression is associated with aggressive disease, and MELK has been implicated in numerous cancer-related processes, including chemotherapy resistance, stem cell renewal, and tumor growth. On the basis of these findings, a MELK inhibitor is currently being tested in several clinical trials. Here, we report that cancer cell lines harboring CRISPR/Cas9-induced null mutations in MELK exhibit wild-type growthin vitro, under environmental stress, in the presence of multiple chemotherapy agents, andin vivo. By combining our MELK-knockout clones with a recently-described, highly-specific MELK inhibitor, we further demonstrate that the acute inhibition of MELK results in no specific anti-proliferative phenotype. Analysis of gene expression data from cohorts of cancer patients identifies MELK expression as a correlate of tumor mitotic activity, explaining its association with poor clinical prognosis. In total, our results demonstrate the power of CRISPR/Cas9-based genetic approaches to investigate cancer drug targets, and call into question the rationale for treating patients with anti-MELK monotherapies.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi169-vi170
Author(s):  
Vidya Gopalakrishnan ◽  
Ajay Sharma ◽  
Sreepradha Sridharan ◽  
Donghang Cheng ◽  
Juan Bournat ◽  
...  

Abstract Diffuse Intrinsic Pontine Glioma (DIPG) is an incurable pediatric brain tumor. An almost ubiquitous dominant negative mutation at lysine (K)-27 in genes encoding histone genes HIST1H3B and H3F3A found in patient tumors is a driver of DIPG development. ONC201, a small molecule DRD2 antagonist and ClpP agonist developed by Chimerix Inc, targets the unfolded protein response (UPR) and integrated stress response (ISR) signaling. It is under clinical investigation in patients with recurrent H3K27M DMGs. In adults, single agent studies have shown durable objective responses when administered orally. A multi-arm, non-randomized multi-institutional Phase I clinical trial (NCT03416530) for pediatric patients with H3K27M DMGs is open and accruing. Preliminary results suggest that the drug has a favorable safety profile and holds promise for patients with DIPGs and other midline gliomas. However, the mechanism of action of ONC201 against DIPGs warrants further study. Here, we show that ONC201 is cytotoxic to DIPGs in vitro and in vivo. RNA Seq analyses revealed cell context specific deployment of PERK-activated UPR and calcium signaling-associated RON tyrosine kinase-macrophage stimulating protein (MSP) signaling in DIPGs. Single cell proteomic assays revealed substantial heterogeneity in the sensitivity of DIPG cells to ONC201, and identified stem-like sub-populations of H3K27M DIPGs with intrinsic insensitivity to the drug. ONC201 treatment, which induces cellular stress, also sensitized DIPG cells to cytolytic activity by ex-vivo expanded and activated innate immune cells, in vitro. Ongoing in vivo experiments are expected to support a novel investigational study in patients with midline gliomas.


2017 ◽  
Vol 215 (2) ◽  
pp. 645-659 ◽  
Author(s):  
Joanna Tober ◽  
Marijke M.W. Maijenburg ◽  
Yan Li ◽  
Long Gao ◽  
Brandon K. Hadland ◽  
...  

Hematopoietic stem cells (HSCs) mature from pre-HSCs that originate in the major arteries of the embryo. To identify HSCs from in vitro sources, it will be necessary to refine markers of HSCs matured ex vivo. We purified and compared the transcriptomes of pre-HSCs, HSCs matured ex vivo, and fetal liver HSCs. We found that HSC maturation in vivo or ex vivo is accompanied by the down-regulation of genes involved in embryonic development and vasculogenesis, and up-regulation of genes involved in hematopoietic organ development, lymphoid development, and immune responses. Ex vivo matured HSCs more closely resemble fetal liver HSCs than pre-HSCs, but are not their molecular equivalents. We show that ex vivo–matured and fetal liver HSCs express programmed death ligand 1 (PD-L1). PD-L1 does not mark all pre-HSCs, but cell surface PD-L1 was present on HSCs matured ex vivo. PD-L1 signaling is not required for engraftment of embryonic HSCs. Hence, up-regulation of PD-L1 is a correlate of, but not a requirement for, HSC maturation.


2021 ◽  
Vol 22 (7) ◽  
pp. 3483
Author(s):  
Colin Rae ◽  
Francesco Amato ◽  
Chiara Braconi

In the search for the ideal model of tumours, the use of three-dimensional in vitro models is advancing rapidly. These are intended to mimic the in vivo properties of the tumours which affect cancer development, progression and drug sensitivity, and take into account cell–cell interactions, adhesion and invasiveness. Importantly, it is hoped that successful recapitulation of the structure and function of the tissue will predict patient response, permitting the development of personalized therapy in a timely manner applicable to the clinic. Furthermore, the use of co-culture systems will allow the role of the tumour microenvironment and tissue–tissue interactions to be taken into account and should lead to more accurate predictions of tumour development and responses to drugs. In this review, the relative merits and limitations of patient-derived organoids will be discussed compared to other in vitro and ex vivo cancer models. We will focus on their use as models for drug testing and personalized therapy and how these may be improved. Developments in technology will also be considered, including the use of microfluidics, 3D bioprinting, cryopreservation and circulating tumour cell-derived organoids. These have the potential to enhance the consistency, accessibility and availability of these models.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 10
Author(s):  
Carla S. S. Teixeira ◽  
Sérgio F. Sousa

Fighting cancer is one of the major challenges of the 21st century. Among recently proposed treatments, molecular-targeted therapies are attracting particular attention. The potential targets of such therapies include a group of enzymes that possess the capability to catalyze at least two different reactions, so-called multifunctional enzymes. The features of such enzymes can be used to good advantage in the development of potent selective inhibitors. This review discusses the potential of multifunctional enzymes as anti-cancer drug targets along with the current status of research into four enzymes which by their inhibition have already demonstrated promising anti-cancer effects in vivo, in vitro, or both. These are PFK-2/FBPase-2 (involved in glucose homeostasis), ATIC (involved in purine biosynthesis), LTA4H (involved in the inflammation process) and Jmjd6 (involved in histone and non-histone posttranslational modifications). Currently, only LTA4H and PFK-2/FBPase-2 have inhibitors in active clinical development. However, there are several studies proposing potential inhibitors targeting these four enzymes that, when used alone or in association with other drugs, may provide new alternatives for preventing cancer cell growth and proliferation and increasing the life expectancy of patients.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
James A. Carroll ◽  
Brent Race ◽  
Katie Williams ◽  
James F. Striebel ◽  
Bruce Chesebro

Abstract Background Past experiments studying innate immunity in the central nervous system (CNS) utilized microglia obtained from neonatal mouse brain, which differ developmentally from adult microglia. These differences might impact our current understanding of the role of microglia in CNS development, function, and disease. Methods Cytokine protein secretion was compared in ex vivo P3 and adult microglial cultures after exposure to agonists for three different toll-like receptors (TLR4, lipopolysaccharide [LPS]; TLR7, imiquimod [IMQ]; and TLR9, CpG Oligodeoxynucleotide [CpG-ODN] 1585). In addition, changes in inflammatory gene expression in ex vivo adult microglia in response to the TLR agonists was assessed. Furthermore, in vivo experiments evaluated changes in gene expression associated with inflammation and TLR signaling in brains of mice with or without treatment with PLX5622 to reduce microglia. Results Ex vivo adult and P3 microglia increased cytokine secretion when exposed to TLR4 agonist LPS and to TLR7 agonist IMQ. However, adult microglia decreased expression of numerous genes after exposure to TLR 9 agonist CpG-ODN 1585. In contrast, in vivo studies indicated a core group of inflammatory and TLR signaling genes increased when each of the TLR agonists was introduced into the CNS. Reducing microglia in the brain led to decreased expression of various inflammatory and TLR signaling genes. Mice with reduced microglia showed extreme impairment in upregulation of genes after exposure to TLR7 agonist IMQ. Conclusions Cultured adult microglia were more reactive than P3 microglia to LPS or IMQ exposure. In vivo results indicated microglial influences on neuroinflammation were agonist specific, with responses to TLR7 agonist IMQ more dysregulated in mice with reduced microglia. Thus, TLR7-mediated innate immune responses in the CNS appeared more dependent on the presence of microglia. Furthermore, partial responses to TLR4 and TLR9 agonists in mice with reduced microglia suggested other cell types in the CNS can compensate for their absence.


2010 ◽  
Vol 207 (1) ◽  
pp. 61-75 ◽  
Author(s):  
Christoph T. Berger ◽  
Jonathan M. Carlson ◽  
Chanson J. Brumme ◽  
Kari L. Hartman ◽  
Zabrina L. Brumme ◽  
...  

CD8+ cytotoxic T lymphocyte (CTL)–mediated immune responses to HIV contribute to viral control in vivo. Epitopes encoded by alternative reading frame (ARF) peptides may be targeted by CTLs as well, but their frequency and in vivo relevance are unknown. Using host genetic (human leukocyte antigen [HLA]) and plasma viral sequence information from 765 HIV-infected subjects, we identified 64 statistically significant (q < 0.2) associations between specific HLA alleles and sequence polymorphisms in alternate reading frames of gag, pol, and nef that did not affect the regular frame protein sequence. Peptides spanning the top 20 HLA-associated imprints were used to test for ex vivo immune responses in 85 HIV-infected subjects and showed responses to 10 of these ARF peptides. The most frequent response recognized an HLA-A*03–restricted +2 frame–encoded epitope containing a unique A*03-associated polymorphism at position 6. Epitope-specific CTLs efficiently inhibited viral replication in vitro when viruses containing the wild-type sequence but not the observed polymorphism were tested. Mutating alternative internal start codons abrogated the CTL-mediated inhibition of viral replication. These data indicate that responses to ARF-encoded HIV epitopes are induced during natural infection, can contribute to viral control in vivo, and drive viral evolution on a population level.


Author(s):  
Gerulf Hänel ◽  
Caroline Angerer ◽  
Katja Petry ◽  
Felix S. Lichtenegger ◽  
Marion Subklewe

AbstractMonocyte-derived Dendritic cells (DCs) have successfully been employed to induce immune responses against tumor-associated antigens in patients with various cancer entities. However, objective clinical responses have only been achieved in a minority of patients. Additionally, generation of GMP-compliant DCs requires time- and labor-intensive cell differentiation. In contrast, Blood DCs (BDCs) require only minimal ex vivo handling, as differentiation occurs in vivo resulting in potentially better functional capacities and survival. We aimed to identify a protocol for optimal in vitro activation of BDCs including the three subsets pDCs, cDC1s, and cDC2s. We evaluated several TLR ligand combinations and demonstrated that polyinosinic:polycytidylic acid [poly(I:C)] and R848, ligands for TLR3 and TLR7/8, respectively, constituted the optimal combination for inducing a positive co-stimulatory profile in all BDC subsets. In addition, TLR3 and TLR7/8 activation led to high secretion of IFN-α and IL-12p70. Simultaneous as opposed to separate tailored activation of pDCs and cDCs increased immunostimulatory capacities, suggesting that BDC subsets engage in synergistic cross-talk during activation. Stimulation of BDCs with this protocol resulted in enhanced migration, high NK-cell activation, and potent antigen-specific T-cell induction.We conclude that simultaneous activation of all BDC subsets with a combination of R848 + poly(I:C) generates highly immunostimulatory DCs. These results support further investigation and clinical testing, as standalone or in conjunction with other immunotherapeutic strategies including adoptive T-cell transfer and checkpoint inhibition.


Sign in / Sign up

Export Citation Format

Share Document