scholarly journals CD4+ T cells stimulate memory CD8+ T cell expansion via acquired pMHC I complexes and costimulatory molecules, and IL-2 secretion

2006 ◽  
Vol 80 (6) ◽  
pp. 1354-1363 ◽  
Author(s):  
Meiqing Shi ◽  
Siguo Hao ◽  
Tim Chan ◽  
Jim Xiang
Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3255-3255
Author(s):  
Nicholas Leigh ◽  
Guanglin Bian ◽  
Wei Du ◽  
George L. Chen ◽  
Hong Liu ◽  
...  

Abstract Graft versus tumor (GVT) effect is the desired and integral outcome for successful allogeneic bone marrow transplantation (allo-BMT) for cancer patients. This effect is dependent on T cell mediated recognition and elimination of residual host tumor cells present after allo-BMT. T cell killing is mediated primarily via three pathways: perforin/granzymes, Fas/FasL, and cytotoxic cytokines. Recent work from our lab has revealed a detrimental role for granzyme B (GzmB) in GVT effect due to its role in activation induced cell death (AICD) of CD8+ T cells. As a result, GzmB-/- CD8+ T cells exhibited higher expansion after allo-BMT and subsequently provided better tumor control. Our current study sought to determine the role of perforin (Prf1) in GVT effect mediated by both CD4+ and CD8+ T cells. Using the MHC-mismatched C57BL/6 (H-2b) to BALB/c (H-2d) allo-BMT model, we first confirmed previous findings that when transplanting CD8+ T cells along with T cell depleted (TCD) BM cells, donor CD8+ T cells require Prf1 to mediate GVT effect against allogeneic A20 lymphoma (Fig 1A, Prf1-/- (n=4) vs WT (n=4), *P<0.05). In addition, our data suggest that Prf1 is also required for CD4+ T cells to effectively mediate GVT effect against A20, as transplant with Prf1-/- CD4+CD25- T cells does not control tumor growth as well as WT controls (Fig 1B). Our previous work showed that GzmB deficiency allows for less AICD and subsequently more CD8+ T cell expansion. New data now show a similar effect for Prf1 in CD8+ T cell accumulation, as Prf1-/- CD8+ T cells outcompete WT CD8+ T cells (CD45.1+) when these two genotypes are mixed in equal numbers and transplanted into tumor bearing BALB/c mice (n=5/time point, *P=0.02 day 9)(Fig 1C). This competitive advantage was due to less AICD in the Prf1-/- CD8+ T cells. However, Prf1 appears to be required for efficient GVT activity, because the higher number of Prf1-/- CD8+ T cells are still less capable than WT counterparts in controlling tumor growth. We next tested the effect of Prf1 in AICD in CD4+CD25- T cells, and again co-transplanted WT CD45.1+ and Prf1-/- CD4+CD25- T cells into tumor bearing mice for a competition assay. Unexpectedly, WT CD4+CD25- T cells accumulate to significantly higher numbers when in direct competition with Prf1-/- CD4+CD25- T cells (n=4/time point, **,P<0.01)(Fig 1D). When we measured apoptotic cells with Annexin V staining, we found that WT CD4+CD25- T cells still had significantly more AICD (Prf1-/- 38.3 ± 4.2% vs. WT 48.1 ± 5.1%, P<0.01 on day 7 post-BMT; Prf1-/- 12.7 ± 1.0% vs. WT 18.1 ± 3.4%, P<0.03 on day 9 post-BMT). This result suggests that while Prf1 has an important role in AICD, it may also play a role in another feature of CD4+ T cell biology. We then explored the hypothesis that may Prf1 promote CD4+ T cell proliferation by evaluating Hoescht staining on day 9 post-BMT. Preliminary results suggest that Prf1 may enhance T cell proliferation, as Prf1-/- CD4+ T cells have less actively dividing cells at this time point. Therefore, Prf1 appears to have a surprising role after allo-BMT in sustaining T cell expansion for CD4+ T cells, but not for CD8+ T cells. Another factor influencing GVT effect may be T cell phenotype. Our previous work with CD8+ T cells suggests that more effector memory (CD62LLOWCD44HIGH) T cells accumulate in the absence of GzmB, and that GzmB-/- CD8+ T cells exhibited higher GVT activity than WT controls. We now found that while Prf1-/- CD4+ T cells also skewed towards the effector memory phenotype (CD62LLOWCD44HIGH), loss of Prf1 still reduced the ability of CD4+ T cells to control tumor growth in this model of allo-BMT. In summary, our results suggest that Prf1 plays an important role in GVT responses mediated not only by CD8+ T cells but also by CD4+ T cells, which were shown in previous literature to mainly utilize Fas ligand and cytokine systems to mediate GVT activity. In addition, Prf1 can cause AICD to both CD4+ and CD8+ T cells after allo-BMT. While Prf1-induced AICD reduces CD8+ T cell expansion, Prf1 appears to play a previously unrecognized role enhancing CD4+ T cell proliferation via an unidentified mechanism. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4284-4284
Author(s):  
Marcus O. Butler ◽  
Osamu Imataki ◽  
Yoshihiro Yamashita ◽  
Makito Tanaka ◽  
Sascha Ansén ◽  
...  

Abstract Abstract 4284 While adoptive T cell therapy is a promising treatment modality for cancer, the optimal approach to generate T cell grafts ex vivo is currently unknown. CD4+ T cells help generate effective immune responses by sustaining CD8+ T cell proliferation, preventing exhaustion, and establishing long-lived functional memory. Incorporation of CD4+ T cell help to expand CD8+ T cells may provide a novel strategy to generate CTL grafts for adoptive therapy. In mouse models, common γ-chain receptor cytokines and CD40/CD40L can mediate CD4+ T cell help. However, CD4+ T cell help in humans has yet to be fully defined. We therefore developed an in vitro model for human CD4+ T cell help, which utilizes a novel artificial APC, aAPC/mOKT3. K562-based aAPC/mOKT3 expresses a membranous form of anti-CD3 mAb, CD54, CD58, CD80, and CD83 and stimulates CD3+ T cells regardless of HLA haplotype or antigen specificity. Using aAPC/mOKT3, we stimulated CD8+ T cells in the presence or absence of CD4+ T cells and found that CD8+ T cells expanded better when coincubated with CD4+ T cells, suggesting the presence of CD4+ T cell help. Coculture experiments using transwell plates suggested that the observed CD4+ T cell help of CD8+ T cell expansion involved both soluble factors and cell-cell contact. To identify molecules mediating the observed CD4+ T cell help, supernatants of CD4+/CD8+ T cell mixed and separate cultures were measured for a panel of soluble factors. IL-2 and IL-21 were detected at lower levels in mixed cultures, consistent with more consumption or less production of these cytokines. Blockade of either IL-2 or IL-21 in CD4+/CD8+ T cell mixed cultures resulted in a reduction of CD8+ T cell expansion, indicating that, for both cytokines, more consumption rather than less production occurred and that IL-2 and IL-21 may serve as mediators of CD4+ T cell help. However, the addition of IL-21 to CD8+ T cells stimulated with aAPC/mOKT3 in the presence of IL-2 did not improve CD8+ T cell expansion, suggesting that IL-2 plus IL-21 cannot solely replace CD4+ T cell help. We found that the presence of CD4+ T cells upregulated the expression of IL-21R on CD8+ T cells. When we introduced IL-21R on CD8+ T cells and stimulated with aAPC/mOKT3 in the presence of IL-2 and IL-21, CD8+ T cell proliferation was restored. These results suggest that CD4+ T cells help CD8+ T cells proliferate ex vivo by secreting both IL-2/IL-21 and upregulating IL-21R. When peripheral CD3+ T cells from normal donors were stimulated with aAPC/mOKT3, the number of both CD4+ and CD8+ T cells increased. However, in contrast to other pan T cell expansion systems, aAPC/mOKT3 preferentially expanded CD8+ T cells. No obvious skewing in the Vβ usage of both CD4+ and CD8+ T cell populations was revealed by TCR Vβ repertoire analysis, supporting “unbiased” T cell expansion by aAPC/mOKT3. Moreover, HLA-restricted antigen-specific CD8+ CTL with high functional avidity could be generated from CD3+ T cells initially expanded for 4 weeks using aAPC/mOKT3. Using aAPC/mOKT3, tumor-infiltrating lymphocytes (TIL) were successfully expanded without adding soluble mAb or allogeneic feeder cells. As in peripheral T cell cultures, CD8+ T cells predominantly expanded in all cultures, including those that initially contained a minimal percentage of CD8+ T cells. Importantly, Foxp3+ Treg cells did not proliferate. Expanded T cells highly expressed CD27 and CD28, which are associated with T cell survival and persistence in vivo. They also secreted high levels of IFN-γ and IL-2, lower amounts of IL-4, and no IL-10. These results demonstrate that the aAPC/mOKT3-based system can expand functional CD8+ TIL in the presence of autologous CD4+ T cells. In conclusion, we have determined that CD4+ T cell-dependent CD8+ T cell expansion required both soluble factors secreted by and cell contact with CD4+ T cells. Among the soluble factors secreted by CD4+ T cells, IL-2 and IL-21 were necessary. Furthermore, upregulation of IL-21R on CD8+ T cells by CD4+ T cells was critical for an optimized response to IL-21. Thus, in humans, CD4+ T cells help CD8+ T cells proliferate by secreting IL-2/IL-21 and upregulating IL-21R. Our aAPC enabled expansion of CD8+ TIL in the presence of CD4+ T cell help without using soluble mAb or allogeneic feeder cells. Taken together, these results demonstrate the indispensable role of CD4+ T cell help on expanding CD8+ T cells and suggest a novel strategy to generate anti-tumor T cells ex vivo for adoptive therapy. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 231 (1-2) ◽  
pp. 75-84 ◽  
Author(s):  
Kenneth Flanagan ◽  
Dorota Moroziewicz ◽  
Heesun Kwak ◽  
Heidi Hörig ◽  
Howard L. Kaufman

2018 ◽  
Vol 35 (4) ◽  
pp. 624-632 ◽  
Author(s):  
Thomas Crépin ◽  
Mathieu Legendre ◽  
Clémence Carron ◽  
Clément Vachey ◽  
Cécile Courivaud ◽  
...  

Abstract Background Patients with chronic kidney disease (CKD) are more prone to develop premature age-related diseases. Data on immune senescence are scarce in CKD populations, except in end-stage renal disease and dialysis. We designed a longitudinal prospective study to evaluate immune senescence at different CKD stages and its influence on CKD patient outcomes. Methods Clinical and biological data collections were performed on 222 patients at different CKD stages [1–2 (n = 85), 4 (n = 53) and 5 (n = 84)]. Immune senescence biomarkers were measured by cytometry on T cells (CD28, CD57, CD45RA, CD31, γH2A.X) or by quantitative polymerase chain reaction [relative telomere length (RTL)] on peripheral blood mononuclear cells and analysed according to CKD stages and outcomes. Results CKD was associated with an increase in immune senescence and inflammation biomarkers, as follows: low thymic output (197 ± 25 versus 88 ± 13 versus 73 ± 21 CD4+CD45RA+CD31+ T cells/mm3), an increased proportion of terminally differentiated T cells (CD8+CD28−CD57+) (24 ± 18 versus 32 ± 17 versus 35 ± 19%) restricted to cytomegalovirus-positive patients, telomere shortening (1.11 ± 0.36 versus 0.78 ± 0.24 versus 0.97 ± 0.21 telomere:single copy ratio) and an increase in C-reactive protein levels [median 2.9 (range 1.8–4.9) versus 5.1 (27–9.6) versus 6.2 (3.4–10.5) mg/L]. In multivariate analysis, shorter RTL was associated with death {hazard ratio [HR] 4.12 [95% confidence interval (CI) 1.44–11.75]}. Low thymic output was associated with infections [HR 1.79 (95% CI (1.34–9.58)] and terminally differentiated CD8+ T-cell expansion with a risk of cardiovascular events [CEs; HR 4.86 (95% CI 1.72–13.72)]. Conclusion CKD was associated with premature immune ageing. Each of these alterations increased the risk of specific age-related diseases, such as RTL and death, thymic function and infections and terminally differentiated CD8+ T-cell expansion and CEs.


2013 ◽  
Vol 1 (S1) ◽  
Author(s):  
Steven K Grossenbacher ◽  
Arta M Monjazeb ◽  
Julia Tietze ◽  
Gail D Sckisel ◽  
Annie Mirsoian ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2725-2725 ◽  
Author(s):  
Matthias Klinger ◽  
Peter Kufer ◽  
Petra Kirchinger ◽  
Ralf Lutterbüse ◽  
Eugen Leo ◽  
...  

Abstract MT103 (MEDI-538) is a bispecific single-chain antibody construct directed at CD3 on human T cells and CD19 on human B lymphoma and normal B cells. Transient linkage of B and T cells by MT103 provides T cells with a T cell receptor (TCR)-like signal leading to redirected lysis of B cell targets without apparent need of costimulation and inducing T cells to proliferate, secrete cytokines and upregulate surface activation markers. TCR-like signalling by MT103 is strictly dependent on the presence of target cells. Redirected lysis of CD19-positive cells by MT103 is seen at low picomolar concentrations and at low effector-to-target ratios. The in-vivo half-life of MT103 is approximately two hours. In the ongoing dose escalation study MT103-104, patients with relapsed B-NHL have so far received continuous infusion of MT103 at maintenance flow-rates of 0.5, 1.5, 5 and 15 μg/m2/24h for 4 or 8 weeks following a 3+3 dose escalation design. Serum concentrations of MT103 remained constant over the entire treatment period at a level depending on the respective maintenance flow-rate. Depletion of circulating B (lymphoma) cells could be observed more frequently with increasing dose levels (DL) from DL1 to DL3, and in all evaluable patients at DL4. Three of six evaluable patients at DL4 showed clinical responses (2 PR, 1 CR) according to standardized Cheson criteria, but no patient of DL1-3. The time courses of absolute CD4 and CD8 T cell counts in peripheral blood were determined by flow cytometry. CD8 T lymphocytes were further subdivided for analysis into naïve T cells, TCM (central memory T cells), TEM (effector memory T cells) and TEMRA (non-proliferating terminally differentiated CTL), and CD4 T lymphocytes into naïve T cells, TCM and TEM. Activation of CD4 and CD8 T cell subsets was determined by measuring upregulation of CD69, CD25 and HLA-DR. Serum levels of cytokines were determined as additional biomarkers for T cell activation. In 50% of patients at DL1 to DL3, CD4 and CD8 T cell counts increased during the course of treatment - over pre-treatment levels. The TEM subset from both CD4 and CD8 T cells accounted for most of the observed increases, while the naïve T cell subsets showed no increase but also no signs of apoptosis. The non-proliferative TEMRA subset of CD8 T cells also remained unchanged in most patients. This indicated that the selective increase of proliferation-competent TEM subsets was attributed to MT103-induced T cell proliferation. At DL4, all evaluable patients showed signs of T cell expansion after 2 weeks of MT103 infusion, which was most pronounced in those who developed a partial or complete remission. The increase of CD8 T cell counts was more pronounced than that of CD4 T cells. T cell expansion was accompanied by upregulation of T cell activation markers as well as by increases in serum concentrations of cytokines like IFN-γ. T cell expansion and activation reverted in all cases when the infusion of MT103 was stopped. In summary, MT103 induced a reversible secondary T cell response involving T cell activation and proliferation as well as T cell cytotoxicity against circulating B cells and lymphoma tissue. The dose-dependent T cell expansion observed during long-term infusion of MT103, particularly within the cytotoxic TEM subset of CD8 T cells, appears to play a key role for clinical activity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2974-2974
Author(s):  
Xiaofan Li ◽  
Wei He ◽  
Ruishu Deng ◽  
Can Liu ◽  
Miao Wang ◽  
...  

Abstract Abstract 2974 Alloreactive donor CD8+ T cells facilitate engraftment and mediate graft versus leukemia (GVL) effects but also cause graft versus host disease (GVHD) in murine and human recipients after allogeneic hematopoietic cell transplantation (HCT). B7-H1 (PD-L1) expression by antigen-presenting cells has an important role in tolerizing activated T cells by binding to PD-1. We and others previously reported that disruption of binding between B7-H1 and PD-1 augments acute GVHD. Parenchymal cells do not usually express B7-H1 but can be induced by inflammatory cytokines (i.e. IFN-g) to express B7-H1. The role of B7-H1 expression by parenchymal tissue cells in regulating the expansion and persistence of donor CD8+ cells in tissues of mice with GVHD has not yet been evaluated. In the current studies, we evaluated the role of B7-H1 expression by GVHD target tissues in regulating donor CD8+ T cell function in 3 different experimental GVHD systems, using in vivo bioluminescent imaging (BLI), in vivo BrdU-labeling, and in vitro proliferation assays. The first system evaluated the role of B7-H1 expression in TBI-conditioned recipients. In these recipients, injected donor CD8+ T cells showed two waves of expansion that correlated with two phases of clinical GVHD. The first wave of donor CD8+ T cell expansion was associated with upregulated expression of B7-H1 in GVHD target tissues and only weak clinical GVHD. The second wave of donor CD8+ T cell expansion was associated with loss of B7-H1 expression, vigorous donor CD8+ T proliferation and expansion in the GVHD target tissues, and lethal GVHD. In a gain-of-function experiment, B7-H1 expression was induced in hepatocytes by hydrodynamic injection of B7-H1 cDNA during the second wave of T cell expansion in mice with GVHD; this subsequently decreased T cell expansion in the liver and ameliorated GVHD. The second system evaluated the role of B7-H1 expression in anti-CD3-conditioned recipients. In wild-type recipients, injected donor CD8+ T cells had only a single wave of expansion, and the mice had no signs of GVHD. B7-H1 expression by tissue cells (i.e. hepatocytes) was up-regulated, and the tissue infiltrating donor CD8+ T cells were anergic. In B7-H1−/− recipients, injected donor CD8+ T cells proliferated vigorously in GVHD target tissues and caused lethal GVHD.The third system evaluated the role of B7-H1 in unconditioned Rag-2−/− recipients after administration of blocking anti-B7-H1 and in the B7-H1−/−Rag-2−/− chimeras with B7-H1 sufficient Rag-2−/− bone marrow cells, in which B7-H1 deficiency was only in tissue parenchymal cells. Both blockade of B7-H1 and B7-H1 deficiency in parenchymal cells resulted in vigorous donor CD8+ T proliferation in GVHD target tissues and caused lethal GVHD. Taken together, these results show that expression of B7-H1 in GVHD target tissue parenchymal cells plays an important role in regulating the proliferation of infiltrating donor CD8+ T cells and preventing the persistence of GVHD. Our studies also indicate that TBI but not anti-CD3 conditioning can lead to loss of GVHD target tissue cell expression of B7-H1 and persistence of GVHD. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14016-e14016
Author(s):  
Jeff Hutchins ◽  
Vikas Tahiliani ◽  
Jayalakshmi Miriyala ◽  
Jason Rose ◽  
Patrick Dillon ◽  
...  

e14016 Background: We are focused on developing and optimizing a next generation cellular vaccine platform – referred to as ComPACT (COMbination Pan-Antigen Cytotoxic Therapy), that incorporates a tumor antigen chaperone (gp96-Ig) with T-cell costimulation (OX40L-Ig), into a single tumor cell line overexpressing a host of cancer associated neoantigens. Viagenpumatucel-L (HS-110; ImPACT), a human lung adenocarcinoma cell line, stably transfected to express gp96-Ig, is being tested in a phase 1/2 clinical trial (NCT#02439450) for NSCLC. A similar line was generated that complements HS-110, providing costimulation in the form of secreted OX40-Ig (HS-130). Methods: To model how the addition of human HS-130 to HS-110 may impact anti-tumor immune responses, we generated mouse surrogates of these human lines (mHS-110 and mHS-130) to activate and expand adoptively transferred ovalbumin specific T cells (OT-1) responding to tumor challenge with ovalbumin over-expressing, B16F10. To identify the best ratio of mHS-110 to mHS-130; multiple dose ratio and dose escalation studies were performed to measure T cell expansion (peripheral and intratumoral) in the context of tumor challenge. Results: CD8+ T-cell expansion was observed on day-7, post-priming, with greatest expansion seen for the 1 to 0.5 ratio. Animals were subsequently boosted 14-days post-priming; the 1 to 0.5 ratio combination gave the most consistent and robust expansion, peaking on day-21. Animals were then challenged with tumors s.c. and growth delay was monitored. Only the 1 to 0.5 and 1 to 4.5 ratio dose groups showed significant delay in tumor growth and weight. Spleen CD4+ and CD8+ T-cells, and CD8+ TILs all increased significantly, as compared to mHS-110 vaccination alone, for the 1 to 0.5 and 1 to 4.5 ratio dose groups. Conclusions: Only the 1 to 0.5 ratio dose group showed any long-term OT-1 expansion or longevity over all other dose ratios, strongly suggesting this is the best combination of gp96-Ig and OX40L-Ig expression for long-term anti-tumor memory generation. These results support the clinical translation of this approach of combining a T cell activation platform with costimulation.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Aránzazu Cruz-Adalia ◽  
Guillermo Ramirez-Santiago ◽  
Jesús Osuna-Pérez ◽  
Mónica Torres-Torresano ◽  
Virgina Zorita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document