The lymphoid chemokine CCL21 costimulates naïve T cell expansion and Th1 polarization of non-regulatory CD4+ T cells

2004 ◽  
Vol 231 (1-2) ◽  
pp. 75-84 ◽  
Author(s):  
Kenneth Flanagan ◽  
Dorota Moroziewicz ◽  
Heesun Kwak ◽  
Heidi Hörig ◽  
Howard L. Kaufman
2016 ◽  
Vol 139 (9) ◽  
pp. 2068-2081 ◽  
Author(s):  
Tithi Ghosh ◽  
Subhasis Barik ◽  
Avishek Bhuniya ◽  
Jesmita Dhar ◽  
Shayani Dasgupta ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1071-1071
Author(s):  
Melody M. Smith ◽  
Cynthia R. Giver ◽  
Edmund K. Waller ◽  
Christopher R. Flowers

Abstract Ex vivo modification of donor lymphocytes with purine analogs (mDL) may help to minimize graft versus host disease (GvHD) while providing beneficial graft versus leukemia (GvL) effects. In a murine model system, we have shown that allogeneic donor splenocytes, treated with fludarabine ex vivo have significantly reduced GvHD activity when transferred to irradiated recipient mice, and retain anti-viral and GvL activities (Giver, 2003). This effect appears to be mediated by relative depletion of donor CD4 CD44low, “naive” T-cells. As a first step toward developing mDL for use in patients, we sought to evaluate the effects of ex vivo fludarabine exposure on human T-cell subsets, and to determine the minimum dose of fludarabine required to achieve this effect. Methods: Peripheral blood mononuclear cell samples from 6 healthy volunteers were evaluated at 0, 24, 48, and 72 hour time points after ex vivo incubation in varying dosages of fludarabine: 2, 5, and 10(n=3) mcg/ml. Fludarabine incubated samples were compared to samples that received no fludarabine (untreated). The total viable cell number was determined and the fractions and absolute numbers of viable CD4 and CD8 naïve and memory T-cells were determined using flow cytometry after incubation with 7-AAD (dead cell stain), CD4, CD8, CD45RA, CD62L, and CCR7 antibodies, and measuring the total viable cells/ml. Results: The numbers of viable CD4 and CD8 T-cells remained relatively stable in control cultures. Without fludarabine, the average viability at 72 hr of naive and memory T-cells were 92% and 77% for CD4 and 86% and 63% for CD 8 (Fig. 1A). Naive CD4 T-cells were more sensitive to fludarabine-induced death than memory CD4 cells. At 72 hr, the average viability of fludarabine-treated naive CD4 T-cells was 33% at 2 mcg/ml (8.2X the reduction observed in untreated cells) and 30% at 5 mcg/ml, while memory CD4 T-cells averaged 47% viability at 2 mcg/ml (2.3X the reduction observed in untreated cells) (Fig. 1B) and 38% at 5 mcg/ml. The average viability of naive CD8 T-cells at 72 hr was 27% at 2 mcg/ml and 20% at 5 mcg/ml, while memory CD8 T-cell viability was 22% at 2 mcg/ml and 17% at 5 mcg/ml. Analyses on central memory, effector memory, and Temra T-cells, and B-cell and dendritic cell subsets are ongoing. The 5 and 10 mcg/ml doses also yielded similar results in 3 initial subjects, suggesting that 2 mcg/ml or a lower dose of fludarabine is sufficient to achieve relative depletion of the naive T-cell subset. Conclusions: Future work will determine the minimal dose of fludarabine to achieve this effect, test the feasibility of using ex vivo nucleoside analog incubation to reduce alloreactivity in samples from patient/donor pairs, and determine the maximum tolerated dose of mDL in a phase 1 clinical trial with patients at high risk for relapse and infectious complications following allogeneic transplantation. Figure Figure


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3255-3255
Author(s):  
Nicholas Leigh ◽  
Guanglin Bian ◽  
Wei Du ◽  
George L. Chen ◽  
Hong Liu ◽  
...  

Abstract Graft versus tumor (GVT) effect is the desired and integral outcome for successful allogeneic bone marrow transplantation (allo-BMT) for cancer patients. This effect is dependent on T cell mediated recognition and elimination of residual host tumor cells present after allo-BMT. T cell killing is mediated primarily via three pathways: perforin/granzymes, Fas/FasL, and cytotoxic cytokines. Recent work from our lab has revealed a detrimental role for granzyme B (GzmB) in GVT effect due to its role in activation induced cell death (AICD) of CD8+ T cells. As a result, GzmB-/- CD8+ T cells exhibited higher expansion after allo-BMT and subsequently provided better tumor control. Our current study sought to determine the role of perforin (Prf1) in GVT effect mediated by both CD4+ and CD8+ T cells. Using the MHC-mismatched C57BL/6 (H-2b) to BALB/c (H-2d) allo-BMT model, we first confirmed previous findings that when transplanting CD8+ T cells along with T cell depleted (TCD) BM cells, donor CD8+ T cells require Prf1 to mediate GVT effect against allogeneic A20 lymphoma (Fig 1A, Prf1-/- (n=4) vs WT (n=4), *P<0.05). In addition, our data suggest that Prf1 is also required for CD4+ T cells to effectively mediate GVT effect against A20, as transplant with Prf1-/- CD4+CD25- T cells does not control tumor growth as well as WT controls (Fig 1B). Our previous work showed that GzmB deficiency allows for less AICD and subsequently more CD8+ T cell expansion. New data now show a similar effect for Prf1 in CD8+ T cell accumulation, as Prf1-/- CD8+ T cells outcompete WT CD8+ T cells (CD45.1+) when these two genotypes are mixed in equal numbers and transplanted into tumor bearing BALB/c mice (n=5/time point, *P=0.02 day 9)(Fig 1C). This competitive advantage was due to less AICD in the Prf1-/- CD8+ T cells. However, Prf1 appears to be required for efficient GVT activity, because the higher number of Prf1-/- CD8+ T cells are still less capable than WT counterparts in controlling tumor growth. We next tested the effect of Prf1 in AICD in CD4+CD25- T cells, and again co-transplanted WT CD45.1+ and Prf1-/- CD4+CD25- T cells into tumor bearing mice for a competition assay. Unexpectedly, WT CD4+CD25- T cells accumulate to significantly higher numbers when in direct competition with Prf1-/- CD4+CD25- T cells (n=4/time point, **,P<0.01)(Fig 1D). When we measured apoptotic cells with Annexin V staining, we found that WT CD4+CD25- T cells still had significantly more AICD (Prf1-/- 38.3 ± 4.2% vs. WT 48.1 ± 5.1%, P<0.01 on day 7 post-BMT; Prf1-/- 12.7 ± 1.0% vs. WT 18.1 ± 3.4%, P<0.03 on day 9 post-BMT). This result suggests that while Prf1 has an important role in AICD, it may also play a role in another feature of CD4+ T cell biology. We then explored the hypothesis that may Prf1 promote CD4+ T cell proliferation by evaluating Hoescht staining on day 9 post-BMT. Preliminary results suggest that Prf1 may enhance T cell proliferation, as Prf1-/- CD4+ T cells have less actively dividing cells at this time point. Therefore, Prf1 appears to have a surprising role after allo-BMT in sustaining T cell expansion for CD4+ T cells, but not for CD8+ T cells. Another factor influencing GVT effect may be T cell phenotype. Our previous work with CD8+ T cells suggests that more effector memory (CD62LLOWCD44HIGH) T cells accumulate in the absence of GzmB, and that GzmB-/- CD8+ T cells exhibited higher GVT activity than WT controls. We now found that while Prf1-/- CD4+ T cells also skewed towards the effector memory phenotype (CD62LLOWCD44HIGH), loss of Prf1 still reduced the ability of CD4+ T cells to control tumor growth in this model of allo-BMT. In summary, our results suggest that Prf1 plays an important role in GVT responses mediated not only by CD8+ T cells but also by CD4+ T cells, which were shown in previous literature to mainly utilize Fas ligand and cytokine systems to mediate GVT activity. In addition, Prf1 can cause AICD to both CD4+ and CD8+ T cells after allo-BMT. While Prf1-induced AICD reduces CD8+ T cell expansion, Prf1 appears to play a previously unrecognized role enhancing CD4+ T cell proliferation via an unidentified mechanism. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3210-3210
Author(s):  
Takayuki Inouye ◽  
Motoko Koyama ◽  
Ensbey Kathleen ◽  
Nicholas Greene ◽  
Luke Samson ◽  
...  

Leukemia relapse represents a failure of graft-versus-leukemia (GVL) and remains the major limitation of allogeneic stem cell/bone marrow transplantation (BMT). Graft-versus-host disease (GVHD) within the gastrointestinal (GI) tract is the principal determinant of transplant-related mortality and is initiated by a network of alloantigen presentation by professional and non-professional APC that prime donor T cells in the GI tract and related lymphoid structures. Since GVL and lethal GVHD are mediated by donor T cells at spatially distinct sites; bone marrow (BM) and the GI tract respectively, we sought tractable approaches to spatially separate alloreactive responses at these two locations. The administration of high dose steroids in the peri-transplant period is permissive of T cell replete HLA-haploidentical BMT and significant GVL effects (Ogawa H, et al. BBMT. 2006). We utilized murine haploidentical BMT models (B6D2F1 → B6C3F1, B6 → B6D2F1) with recipient background MLL/AF9 primary acute myeloid leukemia (AML), with or without dexamethasone (Dex) administration (5 mg/kg/day i.p., days -1 to +5). Dex-treatment improved transplant survival (from 25% to 68% at day 100, P=0.0012) with significant reductions in GVHD histopathology specifically in the colon (histopathology scores 8.7±1.0 vs 4.6±0.8, P< 0.05), despite excellent leukemia control. To understand this paradox, we analyzed the kinetics of donor T cell expansion after BMT. In the mesenteric lymph node (mLN), Dex treatment significantly suppressed the expansion of both CD4 and CD8 T cells (3.3±0.3 x 105 vs 1.4±0.3 x 105, P< 0.001 and 4.2±0.4 x 105 vs 2.1±0.4 x 105, P< 0.01 respectively) and the activation of CD4 T cells (CD25 MFI: 2021±146 vs 1056±102, P< 0.01). In contrast, donor effector/memory CD44+ CD8 T cells were expanded in the BM of Dex treated recipients (1.9±0.3 x 105 vs 3.1±0.4 x 105, P< 0.05) that demonstrated high per cell cytolytic activity against leukemia (specific lysis: 65±2.4 % vs 62±2.6 % in untreated vs Dex-treated, P> 0.05). Surprisingly, there was no difference in proliferation (cell tracking dye dilution: 63±5.5 % vs 57±5.5 % in untreated vs Dex-treated, P> 0.05) or apoptosis (caspase-3: 6.6±0.4 % vs 6.1±0.6 %, caspase-8: 20±1.6 % vs 17±3.3 % in untreated vs Dex-treated, respectively, P> 0.05) of CD4 T cells in the mLN between the two groups. We undertook experiments with luciferase expressing T cells and noted that Dex-treatment preferentially inhibited T cell accumulation in the GI tract, but not marrow after BMT. Thus, it appeared that Dex treatment preferentially re-distributed donor T cells from the GI tract to the bone marrow. We next determined if Dex exerted effects via direct signaling to the donor T cell. We thus transplanted glucocorticoid receptor (GR)-deficient or intact T cells (GRfl/fl lck-Cre mice). Dex-treatment reduced donor CD4 T cell expansion in the mLN independent of their expression of the GR (untreated vs Dex-treated: 2.8±0.6 x 105 vs 1.2±0.3 x 105, lckCREGRfl/fl and 2.4±0.3 x 105 vs 1.4±0.4 x 105, GRfl/fl littermates, P< 0.05 both groups). Thus steroid effects were mediated indirectly, putatively via effects on recipient alloantigen presentation. There was a marked reduction in recipient dendritic cells (DC) and macrophages expressing the Ea peptide within MHC class II in the GI tract of Dex-treated recipients (terminal Ileum YAe+ DC number 896±93 vs 356±40, P< 0.01, YAe+ macrophage number 1035±136 vs 355±97, P< 0.01). In conjunction with this, expression of the gut homing integrin a4b7 expression was reduced in CD4 T cells from Dex treated recipient mLN (25±1.6 % vs 17±1.7 %, P< 0.01), while the marrow homing integrin VLA-4 (a4b1) was increased (a4: 62±2.2 % vs 75±1.6 %, P< 0.001, b1: 52±2.5 % vs 61±1.6 %, P< 0.05) in donor CD8 T cells from Dex treated recipient BM. Finally, Dex treatment enhanced GVL against a second primary AML (BCR/ABL-NUP98/HOXA9) relative to untreated recipients and those receiving post-transplant cyclophosphamide (PT-Cy) (relapse rate: 0% vs 40% vs 100% at day 35 in Dex vs untreated vs PT-Cy, PT-Cy vs Dex-treated, P< 0.0001; untreated vs Dex-treated, P=0.029). These data suggest a potential therapeutic strategy to modulate antigen presentation in the GI tract and consequent integrin imprinting that minimizes GVHD lethality whilst enhancing GVL within BM. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 81 (12) ◽  
pp. 6502-6512 ◽  
Author(s):  
Anju Singh ◽  
Marcel Wüthrich ◽  
Bruce Klein ◽  
M. Suresh

ABSTRACT Despite the well-recognized importance of CD4 T-cell help in the induction of antibody production and cytotoxic-T-lymphocyte responses, the regulation of CD4 T-cell responses is not well understood. Using mice deficient for TNF receptor I (TNFR I) and/or TNFR II, we show that TNFR I and TNFR II play redundant roles in down regulating the expansion of CD4 T cells during an acute infection of mice with lymphocytic choriomeningitis virus (LCMV). Adoptive transfer experiments using T-cell-receptor transgenic CD4 T cells and studies with mixed bone marrow chimeras indicated that indirect effects and not direct effects on T cells mediated the suppressive function of TNF on CD4 T-cell expansion during the primary response. Further studies to characterize the indirect effects of TNF suggested a role for TNFRs in LCMV-induced deletion of CD11chi dendritic cells in the spleen, which might be a mechanism to limit the duration of antigenic stimulation and CD4 T-cell expansion. Consequent to enhanced primary expansion, there was a substantial increase in the number of LCMV-specific memory CD4 T cells in the spleens of mice deficient for both TNFR I and TNFR II. In summary, our findings suggest that TNFRs down regulate CD4 T-cell responses during an acute LCMV infection by a non-T-cell autonomous mechanism.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Wan-Lin Lo ◽  
Benjamin D Solomon ◽  
David L Donermeyer ◽  
Chyi-Song Hsieh ◽  
Paul M Allen

Naive T cell precursor frequency determines the magnitude of immunodominance. While a broad T cell repertoire requires diverse positively selecting self-peptides, how a single positively selecting ligand influences naive T cell precursor frequency remains undefined. We generated a transgenic mouse expressing a naturally occurring self-peptide, gp250, that positively selects an MCC-specific TCR, AND, as the only MHC class II I-Ek ligand to study the MCC highly organized immunodominance hierarchy. The single gp250/I-Ek ligand greatly enhanced MCC-tetramer+ CD4+ T cells, and skewed MCC-tetramer+ population toward V11α+Vβ3+, a major TCR pair in MCC-specific immunodominance. The gp250-selected V11α+Vβ3+ CD4+ T cells had a significantly increased frequency of conserved MCC-preferred CDR3 features. Our studies establish a direct and causal relationship between a selecting self-peptide and the specificity of the selected TCRs. Thus, an immunodominant T cell response can be due to a dominant positively selecting self-peptide.


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1776-1783 ◽  
Author(s):  
Sophie Agaugué ◽  
Emanuela Marcenaro ◽  
Bruna Ferranti ◽  
Lorenzo Moretta ◽  
Alessandro Moretta

Abstract Dendritic cells (DCs) play a crucial role in naive T-cell priming. Recent data suggested that natural killer (NK) cells can influence the capability of DCs to promote Th1 polarization. This regulatory function is primarily mediated by cytokines released in the microenvironment during inflammatory responses involving NK cells. In this study, we show that human NK cells exposed for short time to interleukin (IL)–12, IL-2, or IL-18, promote distinct pathways of Th1 priming. IL-12– or IL-2–conditioned NK cells induce maturation of DCs capable of priming IFN-γ–producing Th1 cells. On the other hand, IL-18–conditioned NK cells induce Th1 polarization only when cocultured with both DCs and T cells. In this case, IL-2 released by T cells and IL-12 derived from DCs during the priming process promote interferon (IFN)–γ production. In contrast, when NK cells are exposed to IL-4, nonpolarized T cells releasing only low levels of IL-2 are generated. Thus, the prevalence of IL-12, IL-2, IL-18, or IL-4 at inflammatory sites may differentially modulate the NK-cell interaction with DCs, leading to different outcomes in naive T-cell polarization.


2012 ◽  
Vol 209 (13) ◽  
pp. 2383-2394 ◽  
Author(s):  
Atsushi Nishida ◽  
Kiyotaka Nagahama ◽  
Hirotsugu Imaeda ◽  
Atsuhiro Ogawa ◽  
Cindy W. Lau ◽  
...  

Immune responses are modified by a diverse and abundant repertoire of carbohydrate structures on the cell surface, which is known as the glycome. In this study, we propose that a unique glycome that can be identified through the binding of galectin-4 is created on local, but not systemic, memory CD4+ T cells under diverse intestinal inflammatory conditions, but not in the healthy state. The colitis-associated glycome (CAG) represents an immature core 1–expressing O-glycan. Development of CAG may be mediated by down-regulation of the expression of core-2 β1,6-N-acetylglucosaminyltransferase (C2GnT) 1, a key enzyme responsible for the production of core-2 O-glycan branch through addition of N-acetylglucosamine (GlcNAc) to a core-1 O-glycan structure. Mechanistically, the CAG seems to contribute to super raft formation associated with the immunological synapse on colonic memory CD4+ T cells and to the consequent stabilization of protein kinase C θ activation, resulting in the stimulation of memory CD4+ T cell expansion in the inflamed intestine. Functionally, CAG-mediated CD4+ T cell expansion contributes to the exacerbation of T cell–mediated experimental intestinal inflammations. Therefore, the CAG may be an attractive therapeutic target to specifically suppress the expansion of effector memory CD4+ T cells in intestinal inflammation such as that seen in inflammatory bowel disease.


Sign in / Sign up

Export Citation Format

Share Document