PROPAGATION OF A PULSE IN A FLUID SPHERE

Geophysics ◽  
1964 ◽  
Vol 29 (2) ◽  
pp. 259-287 ◽  
Author(s):  
Z. Alterman ◽  
P. Kornfeld

The exact solution obtained in a previous paper for the motion of a uniform compressible fluid sphere due to a pressure pulse from a point source situated below the surface is applied to a source at a distance of one‐eighth of the radius below the surface. Taking the sphere as a simplified model of the earth, this corresponds to a source at a depth of about 800 km, which is not far from the depth of a deep‐focus earthquake. The time variation of pressure due to the source is represented by the difference between two step functions with rounded shoulders. The surface velocity due to sources of different durations has been evaluated for eight angular distances. The solution exhibits step function type and “logarithmic” reftected pulses, which one would anticipate from the “steepest descents” analysis of Jeffreys and Lapwood. In addition, the solution reveals single diffracted pulses and groups of diffracted pulses which have no counterpart in ray theory. When geometrical optics allows a ray to appear only after a minimum range [Formula: see text] from the epicenter, the complete wave‐theoretical solution shows that these pulses show up earlier in the forbidden zones. Similarly, in the case where the geometrical optics predicts that a certain ray should appear only for ranges [Formula: see text], and should not appear for [Formula: see text], the wave‐theoretic solution shows that such a ray does appear, by diffraction, for some range of [Formula: see text]. Arrival times of the diffracted pulses of the first group increase with increasing θ, while for the second group they decrease with θ.

Author(s):  
Teije de Jong

AbstractIn this series of papers I attempt to provide an answer to the question how the Babylonian scholars arrived at their mathematical theory of planetary motion. Papers I and II were devoted to system A theory of the outer planets and of the planet Venus. In this third and last paper I will study system A theory of the planet Mercury. Our knowledge of the Babylonian theory of Mercury is at present based on twelve Ephemerides and seven Procedure Texts. Three computational systems of Mercury are known, all of system A. System A1 is represented by nine Ephemerides covering the years 190 BC to 100 BC and system A2 by two Ephemerides covering the years 310 to 290 BC. System A3 is known from a Procedure Text and from Text M, an Ephemeris of the last evening visibility of Mercury for the years 424 to 403 BC. From an analysis of the Babylonian observations of Mercury preserved in the Astronomical Diaries and Planetary Texts we find: (1) that dates on which Mercury reaches its stationary points are not recorded, (2) that Normal Star observations on or near dates of first and last appearance of Mercury are rare (about once every twenty observations), and (3) that about one out of every seven pairs of first and last appearances is recorded as “omitted” when Mercury remains invisible due to a combination of the low inclination of its orbit to the horizon and the attenuation by atmospheric extinction. To be able to study the way in which the Babylonian scholars constructed their system A models of Mercury from the available observational material I have created a database of synthetic observations by computing the dates and zodiacal longitudes of all first and last appearances and of all stationary points of Mercury in Babylon between 450 and 50 BC. Of the data required for the construction of an ephemeris synodic time intervals Δt can be directly derived from observed dates but zodiacal longitudes and synodic arcs Δλ must be determined in some other way. Because for Mercury positions with respect to Normal Stars can only rarely be determined at its first or last appearance I propose that the Babylonian scholars used the relation Δλ = Δt −3;39,40, which follows from the period relations, to compute synodic arcs of Mercury from the observed synodic time intervals. An additional difficulty in the construction of System A step functions is that most amplitudes are larger than the associated zone lengths so that in the computation of the longitudes of the synodic phases of Mercury quite often two zone boundaries are crossed. This complication makes it difficult to understand how the Babylonian scholars managed to construct System A models for Mercury that fitted the observations so well because it requires an excessive amount of computational effort to find the best possible step function in a complicated trial and error fitting process with four or five free parameters. To circumvent this difficulty I propose that the Babylonian scholars used an alternative more direct method to fit System A-type models to the observational data of Mercury. This alternative method is based on the fact that after three synodic intervals Mercury returns to a position in the sky which is on average only 17.4° less in longitude. Using reduced amplitudes of about 14°–25° but keeping the same zone boundaries, the computation of what I will call 3-synarc system A models of Mercury is significantly simplified. A full ephemeris of a synodic phase of Mercury can then be composed by combining three columns of longitudes computed with 3-synarc step functions, each column starting with a longitude of Mercury one synodic event apart. Confirmation that this method was indeed used by the Babylonian astronomers comes from Text M (BM 36551+), a very early ephemeris of the last appearances in the evening of Mercury from 424 to 403 BC, computed in three columns according to System A3. Based on an analysis of Text M I suggest that around 400 BC the initial approach in system A modelling of Mercury may have been directed towards choosing “nice” sexagesimal numbers for the amplitudes of the system A step functions while in the later final models, dating from around 300 BC onwards, more emphasis was put on selecting numerical values for the amplitudes such that they were related by simple ratios. The fact that different ephemeris periods were used for each of the four synodic phases of Mercury in the later models may be related to the selection of a best fitting set of System A step function amplitudes for each synodic phase.


2021 ◽  
pp. 0271678X2110103
Author(s):  
Nao Hatakeyama ◽  
Miyuki Unekawa ◽  
Juri Murata ◽  
Yutaka Tomita ◽  
Norihiro Suzuki ◽  
...  

A variety of brain cells participates in neurovascular coupling by transmitting and modulating vasoactive signals. The present study aimed to probe cell type-dependent cerebrovascular (i.e., pial and penetrating arterial) responses with optogenetics in the cortex of anesthetized mice. Two lines of the transgenic mice expressing a step function type of light-gated cation channel (channelrhodopsine-2; ChR2) in either cortical neurons (muscarinic acetylcholine receptors) or astrocytes (Mlc1-positive) were used in the experiments. Photo-activation of ChR2-expressing astrocytes resulted in a widespread increase in cerebral blood flow (CBF), extending to the nonstimulated periphery. In contrast, photo-activation of ChR2-expressing neurons led to a relatively localized increase in CBF. The differences in the spatial extent of the CBF responses are potentially explained by differences in the involvement of the vascular compartments. In vivo imaging of the cerebrovascular responses revealed that ChR2-expressing astrocyte activation led to the dilation of both pial and penetrating arteries, whereas ChR2-expressing neuron activation predominantly caused dilation of the penetrating arterioles. Pharmacological studies showed that cell type-specific signaling mechanisms participate in the optogenetically induced cerebrovascular responses. In conclusion, pial and penetrating arterial vasodilation were differentially evoked by ChR2-expressing astrocytes and neurons.


1964 ◽  
Vol 54 (6A) ◽  
pp. 1915-1925 ◽  
Author(s):  
I. Lehmann

abstract The European records from distances 36°-50° of the deep Hindu Kush earthquake of March 4, 1949 were studied. The many clearly recorded deep-focus reflections lend to the records a characteristic appearance which is repeated in many other shocks from the same focal region. The ratios of the amplitudes of these phases vary somewhat from one shock to another. In the shock here considered sP and sPP are exceptionally large at most stations; in the Italian stations they are not so large, while pP is a clear phase. pP is not very well defined at most other stations. Most of the 1949 records were from the old type long-period instruments having their highest magnification for periods from about 5 sec to 12 sec. Present day instruments of quite short or of very long proper period while admirable for many purposes do not record waves in this period range very well and therefore do not produce a satisfactory picture of the forerunners of earthquakes. The difference between the records obtained on different instruments is illustrated. It is shown in examples that the amplitude ratio PP:P may differ strongly at the same epicentral distance and also that pP may vary greatly with azimuth. The deficiency of station readings is noted. Travel times and their residuals are tabulated and travel times plotted versus epicentral distances.


1998 ◽  
Vol 120 (3) ◽  
pp. 489-495 ◽  
Author(s):  
S. J. Hu ◽  
Y. G. Liu

Autocorrelation in 100 percent measurement data results in false alarms when the traditional control charts, such as X and R charts, are applied in process monitoring. A popular approach proposed in the literature is based on prediction error analysis (PEA), i.e., using time series models to remove the autocorrelation, and then applying the control charts to the residuals, or prediction errors. This paper uses a step function type mean shift as an example to investigate the effect of prediction error analysis on the speed of mean shift detection. The use of PEA results in two changes in the 100 percent measurement data: (1) change in the variance, and (2) change in the magnitude of the mean shift. Both changes affect the speed of mean shift detection. These effects are model parameter dependent and are obtained quantitatively for AR(1) and ARMA(2,1) models. Simulations and examples from automobile body assembly processes are used to demonstrate these effects. It is shown that depending on the parameters of the AMRA models, the speed of detection could be increased or decreased significantly.


1999 ◽  
Vol 89 (4) ◽  
pp. 938-945 ◽  
Author(s):  
Gene A. Ichinose ◽  
Kenneth D. Smith ◽  
John G. Anderson

Abstract An accident at the Sierra Chemical Company Kean Canyon plant, 16 km east of Reno, Nevada, resulted in two explosions 3.52 sec apart that devastated the facility. An investigation into a possible cause for the accident required the determination of the chronological order of the explosions. We resolved the high-precision relative locations and chronology of the explosions using a cross-correlation method applied to both seismic and air waves. The difference in relative arrival times of air waves between the explosions indicated that the first explosion occurred at the northern site. We then determined two station centroid separations between explosions, which average about 73 m with uncertainties ranging from ± 17 to 41 m depending on the alignment of station pairs. We estimated a centroid separation of 80 m using P waves with a larger uncertainty of ± 340 m. We performed a grid search for an optimal separation and the azimuth by combining air-wave arrivals from three station pairs. The best solution for the relative location of the second explosion is 73.2 m S35°E from the first explosion. This estimate is well within the uncertainties of the survey by the U.S. Chemical Safety and Hazard Investigation Board (CSB). The CSB reported a separation of approximately 76.2 m S33°E. The spectral amplitudes of P waves are 3 to 4 times higher for the second explosion relative to the first explosion, but the air waves have similar spectral amplitudes. We suggest that this difference is due to the partitioning of energy between the ground and air caused by downward directivity at the southern explosion, and upward directivity at the northern explosion. This is consistent with the absence of a crater for the first explosion and a 1.8-m-deep crater for the second explosion.


1986 ◽  
Vol 109 ◽  
pp. 143-155
Author(s):  
D. S. Robertson

In the application of Very-Long-Baseline Interferometry (VLBI) to astrometric problems the fundamental observable is the difference in the arrival times of a wavefront at two widely separated receiving stations. Since the radio sources being observed are sufficiently distant that the arriving wavefront can be considered to be a plane wave, the differential arrival time is a measure of the component of the baseline in the direction of the source. Equivalently, if the baseline is known, the differential arrival time is sufficient to determine a circle on the sky containing the source. It is easy to show that a minimum of ten observations distributed among three different sources is sufficient to determine all of the source coordinates and the baseline coordinates simultaneously (Robertson, 1975).


Author(s):  
S. F. Lukomskii ◽  
G. S. Berdnikov

We consider a class of (N, M)-elementary step functions on the p-adic Vilenkin group. We prove that (N, M)-elementary step function generates a MRA on p-adic Vilenkin group if and only if it is generated by a special N-valid rooted tree on the set of vertices {0,1,…p - 1} with the vector (0,…,0) ∈ ℤN as a root.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Masashi Ogiso ◽  
Kiyoshi Yomogida

AbstractAlthough seismic amplitudes can be used to estimate event locations for volcanic tremors and other seismic events with unclear phase arrival times, the precision of such estimates is strongly affected by site amplification factors. Therefore, reduction of the influence of site amplification will allow more precise estimation of event locations by this method. Here, we propose a new method to estimate relative event locations using seismic amplitudes. We use the amplitude ratio between two seismic events at a given station to cancel out the effect of the site amplification factor at that station. By assuming that the difference between the hypocentral distances of these events is much smaller than their hypocentral distances themselves, we derive a system of linear equations for the differences in relative event locations. This formulation is similar to that of a master event location method that uses differences in phase arrival times. We applied our new method to earthquakes and tremors at Meakandake volcano, eastern Hokkaido, Japan. Comparison of the hypocentral distributions of volcano-tectonic earthquakes obtained thereby with those obtained from phase arrival times confirmed the validity of our new method. Moreover, our method clearly identified source migration among three source regions in the tremor on 16 November 2008, consistent with previous interpretations of other geophysical observations in our study area. Our method will thus be useful for detailed analyses of seismic events whose onset times are ambiguous.


Author(s):  
R. J. Yang ◽  
G. Li ◽  
Y. Fu

This research addresses the development of validation metrics for vehicle frontal impact simulation. The model validation metrics provide a quantified measurement of the difference between CAE simulation and physical test. They are useful to develop an objective model evaluation procedure for eventually achieving the goal of zero or near zero prototyping. In this research, full frontal crash pulses are chosen as the key items to be compared in the vehicle frontal impact simulation. Both physics- and mathematics-based metrics are investigated. The physics-based metric include a method of using a simplified step function representation and the mathematics-based metrics include methods of wavelet decomposition, corridor violation plus area, and metrics used in a commercial code ADVISER, respectively. They are all correlated to subject matter experts’ rating through optimal weightings. A new metric, considering variabilities from both experts and metrics for frontal crash pulse, is proposed. One example is used to demonstrate its application.


1969 ◽  
Vol 36 (3) ◽  
pp. 485-490 ◽  
Author(s):  
J. S. Whittier ◽  
J. C. Peck

Transient stress-wave experiments on laminated composites are described, and the results are compared with theoretical predictions. The composites are laminated from alternating layers of high and low-modulus material, which cause a high degree of geometric dispersion of waves propagating in the composite. Experiments were conducted in which waves propagated parallel to the laminations. Flat plates were subjected on one face to a uniform pressure with step-function time dependence induced by a gas-dynamic shock wave. Under this loading, the central portion of the specimen initially responds as if it were laterally unbounded. The average velocity over a 3/8-in-dia area of the backface of the plate was measured with a capacitance gauge. The results are in good agreement with theoretical predictions made with a long-time asymptotic approximation called the head-of-the-pulse approximation. The theory isolates the dominant character of the response and predicts timing and amplitude of oscillations in normalized rear surface velocity within a few percent.


Sign in / Sign up

Export Citation Format

Share Document