SOURCE DISTANCE DEPENDENCE OF THE SURFACE‐IMPEDANCE CONDUCTIVITY MEASUREMENT TECHNIQUE

Geophysics ◽  
1969 ◽  
Vol 34 (5) ◽  
pp. 785-788 ◽  
Author(s):  
Peter R. Bannister

The surface impedance conductivity measurement technique, commonly called the magnetotelluric method (Wait, 1962a), has been employed for many years at frequencies below 1 Hz. Recently, frequencies in the extremely low frequency (ELF) and very low frequency (VLF) bands have been employed (Watt et al, 1963).


1996 ◽  
Vol 42 (140) ◽  
pp. 33-36 ◽  
Author(s):  
David V. Thiel ◽  
Daniel James ◽  
Peter Johnson

AbstractThe effects on very low-frequency surface-impedence measurements of lateral variations commonly found in ice environments have been measured and modelled numerically using die quasi-static two-dimensional boundary-element method. Results indicate that surface-impedance measurements made in the vicinity of crevasses oriented perpendicular to the plane Of incidence, and those made in the vicinity of moraines and melt streams, can all show significant changes to the measured apparent resistivity. It is, therefore, misleading to use such measurements in the interpretation of ice depth.



2019 ◽  
Vol 283 ◽  
pp. 02003
Author(s):  
Jun Zhu ◽  
Hanhao Zhu ◽  
Jun Tang ◽  
Guangxue Zheng

Targeted at the issue of extremely low-frequency (<100Hz) acoustic propagation in complex shallow elastic bottom environments. The influence law of different complex elastic bottoms on the acoustic signal propagation at very low frequency by acoustic energy flux has been analyzed with the simulation, which is based on the finite element method. The elastic bottoms which have been studied are the shallow horizontal elastic bottom, and the up-sloping and the down-sloping elastic bottom. The results show that the acoustic signal propagating in the up-sloping and down-sloping elastic bottom environments is more complex than that propagating in the horizontal elastic bottom, and the acoustic energy leaking into those elastic bottoms has very different influence on the acoustic signal propagation, especially in the up-sloping bottom.



2020 ◽  
Author(s):  
Caron E.J. Vossen ◽  
Corrado Cimarelli ◽  
Alec J. Bennett ◽  
André Geisler ◽  
Damien Gaudin ◽  
...  

&lt;p&gt;Volcanoes are increasingly better monitored around the world. Nonetheless, the detection and monitoring of volcanic ash plumes remains difficult, especially in remote areas. Intense electrical activity and lightning in volcanic plumes suggests that electrical monitoring of active volcanoes can aid the detection of ash emissions in near real-time. Current very low frequency and wide-band thunderstorm networks have proven to be able to detect plumes of large magnitude. However, the time delay and the relatively high number of non-detected explosive episodes show that the applicability of these systems to the detection of smaller (and often more frequent) ash-rich explosive events is limited. Here we use a different type of thunderstorm detector to observe electrical discharges generated by the persistent Vulcanian activity of Minamidake crater at Sakurajima volcano in Japan. The sensors consist of two antennas that measure the induced current due to the change in electric field with time. In contrast to the current thunderstorm networks, these sensors measure within the extremely low frequency range (1-45 Hz) and can detect lightning up to 35 kilometres distance.&lt;/p&gt;&lt;p&gt;Two detectors were installed at a distance of 3 and 4 kilometres from Minamidake crater and recorded almost continuously since July 2018. Within this period, the ash plumes reached a maximum height of 5.5 kilometres above the crater rim. Using a volcanic lightning detection algorithm and the catalogue of volcanic explosions compiled by the Japan Meteorological Agency (JMA), the number of electrical discharges was determined for each individual explosive event. In addition, the start of electrical discharges was compared to the eruption onset estimated by the JMA.&lt;/p&gt;&lt;p&gt;Preliminary results show that the detector closest to the crater had the highest detection efficiency. It detected electrical discharges during 60% of the eruptions listed by the JMA. This is significantly higher than for the World Wide Lightning Location Network, which detected electrical discharges (in the very low frequency range) within 20 kilometres of Sakurajima for less than 0.005% of the eruptions. Furthermore, the results show that for 40% of the detected eruptions, electrical discharges were detected before the estimated JMA timing. Hence, electrical discharges can mark the inception of the explosion with a higher precision and are an indication of ash emission. This demonstrates the value of the cost-effective sensors used here as a monitoring tool at active volcanoes.&lt;/p&gt;



1996 ◽  
Vol 42 (140) ◽  
pp. 33-36
Author(s):  
David V. Thiel ◽  
Daniel James ◽  
Peter Johnson

AbstractThe effects on very low-frequency surface-impedence measurements of lateral variations commonly found in ice environments have been measured and modelled numerically using die quasi-static two-dimensional boundary-element method. Results indicate that surface-impedance measurements made in the vicinity of crevasses oriented perpendicular to the plane Of incidence, and those made in the vicinity of moraines and melt streams, can all show significant changes to the measured apparent resistivity. It is, therefore, misleading to use such measurements in the interpretation of ice depth.



Sign in / Sign up

Export Citation Format

Share Document