Radio‐frequency geotomography for remotely probing the interiors of operating mini‐ and commercial‐sized oil‐shale retorts

Geophysics ◽  
1984 ◽  
Vol 49 (8) ◽  
pp. 1288-1300 ◽  
Author(s):  
Stephen F. Somerstein ◽  
Mike Berg ◽  
David Chang ◽  
Hwang Chung ◽  
Hal Johnson ◽  
...  

Cross‐borehole, radio‐frequency geotomographs were made across two different‐sized, operating, experimental, underground, in‐situ, oil‐shale retorts. The tomographs taken of the smaller retort were of a plane 16.7 m wide by 18.0 m high bisecting the retort. The measurements were taken at a frequency of 25 MHz and showed excellent correlation of high signal attenuation with the high‐temperature zones. Measured attenuation coefficients (inverse skin depth) at 25 MHz ranged from [Formula: see text] across the cool, unrubbled, sill‐pillar, and between [Formula: see text] for the high‐temperature 370–700° C zone. Image resolution was approximately 1 m. The signal attenuation across the lower retort region was also found to correlate well with the movement and concentration of condensed water. The conventional algebraic deconvolution method (ART) was modified for limited perspective and finite beam width, and gave results which were in good agreement with thermocouple data. The measurements made on the larger retort were taken over a period of 33 days of retort burn and mapped the attenuation coefficients in a vertical plane 90 m wide by 48 m high at a frequency of 1.5 MHz. At this frequency, attenuation coefficients in the cool, dry retort regions were between 0.12 and [Formula: see text], while regions containing a high moisture content had coefficients of from 0.15 to [Formula: see text]. In the regions encompassing the retorting and combustion zones, attenuation coefficients were between 0.15 and [Formula: see text]. Some additional effects on the attenuation measurements were observed due to nearby thermocouple piping. The movement of the contours of attenuation coefficient with time followed temperature changes, though the paucity of thermocouples in the tomographic plane only allowed a marginal correlation to be made. Overall results suggest that radio‐frequency geotomography can be a useful tool for mapping in‐situ moisture concentrations and temperature fronts in an operating in‐situ oil‐shale retort.

2012 ◽  
Vol 61 (1T) ◽  
pp. 452-457
Author(s):  
Eric P. Robertson ◽  
Michael G. McKellar ◽  
Lee O. Nelson

Geophysics ◽  
1984 ◽  
Vol 49 (10) ◽  
pp. 1701-1707 ◽  
Author(s):  
William Daily

Geophysical tomographs (geotomographs) were made of two underground oil‐shale retorts: (1) the Occidental Oil Shale Inc. miniretort constructed for ignition tests at the demonstration mine at Logan Wash, Colorado; and (2) the Geokinetics Oil Shale Inc. Retort 25 near Vernal, Utah. These experiments demonstrate that geotomography may be a valuable diagnostic tool for underground oil‐shale retorting processes. At the Geokinetics in‐situ retort, the technique delineated the zones of high permeability in a cross‐section of the retort. At the Occidental modified in‐situ miniretort, the technique imaged the high temperature zone of the retort with a spatial resolution of about 2 m, and showed its temporal development over a period of eleven days.


SPE Journal ◽  
2020 ◽  
Vol 25 (03) ◽  
pp. 1443-1461
Author(s):  
Travis Ramsay

Summary In-situ pyrolysis provides an enhanced oil recovery (EOR) technique for exploiting oil and gas from oil shale by converting in-place solid kerogen into liquid oil and gas. Radio-frequency (RF) heating of the in-place oil shale has previously been proposed as a method by which the electromagnetic energy gets converted to thermal energy, thereby heating in-situ kerogen so that it converts to oil and gas. In order to numerically model the RF heating of the in-situ oil shale, a novel explicitly coupled thermal, phase field, mechanical, and electromagnetic (TPME) framework is devised using the finite element method in a 2D domain. Contemporaneous efforts in the commercial development of oil shale by in-situ pyrolysis have largely focused on pilot methodologies intended to validate specific corporate or esoteric EOR strategies. This work focuses on addressing efficient epistemic uncertainty quantification (UQ) of select thermal, oil shale distribution, electromagnetic, and mechanical characteristics of oil shale in the RF heating process, comparing a spectral methodology to a Monte Carlo (MC) simulation for validation. Attempts were made to parameterize the stochastic simulation models using the characteristic properties of Green River oil shale. The geologic environment being investigated is devised as a kerogen-poor under- and overburden separated by a layer of heterogeneous yet kerogen-rich oil shale in a target formation. The objective of this work is the quantification of plausible oil shale conversion using TPME simulation under parametric uncertainty; this, while considering a referenced conversion timeline of 1.0 × 107 seconds. Nonintrusive polynomial chaos (NIPC) and MC simulation were used to evaluate complex stochastically driven TPME simulations of RF heating. The least angle regression (LAR) method was specifically used to determine a sparse set of polynomial chaos coefficients leading to the determination of summary statistics that describe the TPME results. Given the existing broad use of MC simulation methods for UQ in the oil and gas industry, the combined LAR and NIPC is suggested to provide a distinguishable performance improvement to UQ compared to MC methods.


2021 ◽  
Vol 39 (2) ◽  
pp. 417-423
Author(s):  
Pengfei Jiang ◽  
Danlei Zhang ◽  
Bin Li ◽  
Chao Song

An in-situ pyrolysis technology was proposed for shallow oil shale: drilling horizontal wells to the oil shale formation, connecting the horizontal well sections through hydraulic fracturing, injecting nitrogen from the surface to bottomhole, heating up the nitrogen to a high temperature at the bottom, and directly using the high-temperature nitrogen for oil shale pyrolysis. Then, a mathematical model was established for the heat transfer within the oil shale, and a simplified physical model was created for in-situ pyrolysis of oil shale, and used to simulate the heat transfer process. The simulation results show that, with the extension of heating time, the area of effectively pyrolyzed oil shale formation took up an increasingly large proportion of the total cross-sectional area of the formation; however, the increase of the pyrolysis area ratio was rather slow, and the temperature was unevenly distributed in the formation after a long duration of heating. Therefore, the 300d in-situ heating was split into two stages: 250d of heating in the heating well and 50d of heating in the production well. The two-stage heating maximized the heating area of oil shale, and heated 57% of the cross-sectional area up to 400℃, ensuring the effectiveness of pyrolysis. Moreover, this heating scheme ensured an even distribution of temperature in oil shale formation, a high energy utilization, and a desirable heating effect.


Author(s):  
Z. L. Wang ◽  
J. Bentley

Studying the behavior of surfaces at high temperatures is of great importance for understanding the properties of ceramics and associated surface-gas reactions. Atomic processes occurring on bulk crystal surfaces at high temperatures can be recorded by reflection electron microscopy (REM) in a conventional transmission electron microscope (TEM) with relatively high resolution, because REM is especially sensitive to atomic-height steps.Improved REM image resolution with a FEG: Cleaved surfaces of a-alumina (012) exhibit atomic flatness with steps of height about 5 Å, determined by reference to a screw (or near screw) dislocation with a presumed Burgers vector of b = (1/3)<012> (see Fig. 1). Steps of heights less than about 0.8 Å can be clearly resolved only with a field emission gun (FEG) (Fig. 2). The small steps are formed by the surface oscillating between the closely packed O and Al stacking layers. The bands of dark contrast (Fig. 2b) are the result of beam radiation damage to surface areas initially terminated with O ions.


Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


Sign in / Sign up

Export Citation Format

Share Document