Intermediate‐scale magnetic anomalies of the Earth

Geophysics ◽  
1985 ◽  
Vol 50 (12) ◽  
pp. 2817-2830 ◽  
Author(s):  
J. Arkani‐Hamed ◽  
D. W. Strangway

Four separate magnetic anomaly maps of the earth are derived from magnetometer satellite data acquired at dawn and at dusk using two different altitude ranges. The magnetic anomalies on the two dawn maps (or dusk maps) are well correlated for spherical harmonics of degree less than 51, suggesting that the time varying external magnetic field and leveling noise have negligible effects on these harmonics. Dawn and dusk maps have an appreciable asymmetric component for harmonics of degree n ⩽ 5 and n = 15 and 17, arising from the quasi‐stable external magnetic field. Dawn‐dusk covariant harmonics of degree [Formula: see text] with signal‐to‐noise ratios greater than 1.5 correlate well. Correlation coefficients are higher than 0.75, implying that these harmonics can be repeatably derived. A global scalar magnetic anomaly map is derived based on these harmonics. The map is then converted to a magnetic susceptibility anomaly map by an inversion technique. The susceptibility anomalies delineate the ocean‐continent differences as well as the boundaries of tectonic provinces, modern uplifts, crustal rifts, and sedimentary basins.

2020 ◽  
Author(s):  
Pavel Hejda ◽  
Dana Čápová ◽  
Eva Hudečková ◽  
Vladimír Kolejka

<p>The modern epoch of ground magnetic surveying activity on the Czech territory was started by the Institute of Geophysics by setting up a fundamental network of the 1<sup>st</sup> order in 1957-58. It consists of 199 points and was reoccupied in 1976-78 and 1994-96. The anomaly maps were constructed by subtraction of the IGRF model.</p><p>Extensive aeromagnetic measurements have been performed from 1959 to 1972 by permalloy probe of Soviet provenience. The accuracy of the instrumentation was about (and often above) 10 nT. The second period of airborne survey started in 1976. Thanks to the deployment of proton precession magnetometer, the accuracy improved to ~ 2 nT. Since 2004 the measurements were carried out by caesium magnetometer. The data were digitized, known anthropogenic anomalies were cleared away and data were transformed to the regular grid with step 250 m. The final data file of magnetic anomalies ΔT, administered by the Czech Geological Survey, represents a substantial contribution to the exploration of ore deposits and to the structure geology in general.</p><p>In view of the fact that data file of magnetic anomalies was compiled from data acquired by heterogeneous methods in the course of more than 50 years, our recent study is aimed at looking into the homogeneity of the data by comparison them with ground-based magnetic survey. A simple comparison of the contour maps showed good similarity of the large regional anomalies. For more detailed analysis, the variation of ΔT in the neighbourhood of all points of the fundamental network was inspected and the basic statistic characteristics were computed. Summary results as well as several examples will be presented accordingly as the INSPIRE compliant services and eventually as the user-friendly web map application and made available on the CGS Portal http://mapy.geology.cz/ and on the updated web of the CzechGeo/EPOS consortium www.czechgeo.cz. Incorporating the map into the World Digital Magnetic Anomaly Map (WDMAM – IAGA) is also under consideration. This data will also be interesting for the EPOS.</p>


Geophysics ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 366-369 ◽  
Author(s):  
Aivars Celmins

On page 748 of the above named paper, Affleck (1958) mentions an interesting behavior of magnetic anomalies which are caused by homogeneous magnetized two‐dimensional bodies. He states that in these cases the airborne magnetometer anomaly can be treated as either the vertical or horizontal component anomaly if the true magnetization is replaced by a pseudo‐magnetization of other direction and intensity. It may be of some interest to formulate this behavior more precisely, so much the more as the interdependence between the magnetization directions and the direction of a normal magnetic field can be expressed by a rather simple formula.


Geophysics ◽  
1976 ◽  
Vol 41 (5) ◽  
pp. 1055-1055

Our country’s urgent need to find new sources for minerals and energy and its need to know more about the planet on which we live could be greatly assisted by preparation of a national magnetic anomaly map (NMAM)—a map which will provide an accurate representation of the earth’s anomalous magnetic field. It is startling to note that the U.S. is one of the few developed countries which has not commissioned a detailed airborne magnetic survey of the whole country, followed by production of a national magnetic anomaly map.


2020 ◽  
Author(s):  
Rick Saltus ◽  
Aaron Canciani ◽  
Brian Meyer ◽  
Arnaud Chulliat

<p>We usually think of crustal magnetic anomalies as static (barring some major seismic or thermal disruption).  But a significant portion of the crustal magnetic field is caused by the interaction of magnetic minerals with the Earth’s magnetic field.  This induced magnetic effect is dependent on the direction and magnitude of the ambient field.  So, of course, as the Earth’s magnetic field changes over time, the form and magnitude of induced magnetic anomalies will vary as well.  These changes will often be negligible for interpretation when compared with measurement and other interpretational uncertainties.  However, with the reduction of various sources of measurement noise and increased fidelity of interpretation, these temporal anomaly changes may need to be considered.</p><p>In addition to considerations relating to interpretation uncertainty, these temporal anomaly changes, if they are measured in multiple magnetic epochs, can theoretically provide valuable information for use in source inversion.  For example, since crustal magnetic anomalies arise from a combination of induced (dependent the ambient field) and remanent (not dependent on ambient field) magnetic sources, measurements of secular magnetic variation can assist in separating these two sources during inversion.</p><p>We will report modeling of the expected form and magnitude of predicted induced anomaly variations, the possible implications of these variations for data compilation and interpretation, and on the availability of relevant data for measuring them.  Recent research into the use of high-resolution magnetic anomaly maps for airborne magnetic navigation has also brought the issue of changing magnetic fields into focus.  Initial work indicates that changes in induced anomalies could affect navigation accuracy in certain situations.</p>


2020 ◽  
Author(s):  
Jan Deca ◽  
Douglas J. Hemingway ◽  
Andrey Divin ◽  
Charles Lue ◽  
Andrew R. Poppe ◽  
...  

<p>The Reiner Gamma swirl is one of the most prominent albedo features on the lunar surface. Its modest spatial scales and structure allows fully kinetic modelling. The region therefore presents a prime location to investigate the lunar albedo patterns and their co-location with magnetic anomalies. The precise relationship between the impinging plasma and the swirl, and in particular, how these interactions vary over the course of a lunar day, remains an open issue.</p><p>Here we use the fully kinetic particle-in-cell code,  iPIC3D, coupled with a magnetic field model based on Kaguya and Lunar Prospector observations, and simulate the interaction with the Reiner Gamma anomaly for all plasma regimes the region is exposed to along a typical orbit, including different solar wind incidence angles and the Moon's crossing through the terrestrial magnetosphere. We focus on the impact of the solar wind alpha population and construct energy and velocity distributions in key locations surrounding the interaction region of the anomaly.</p><p>The energy flux profile provides a better match to the albedo pattern only when integrating over the full lunar orbit. Including He<sup>2+</sup> as a self-consistent plasma species improves the brightness ratios between the inner and outer bright lobes, the dark lanes, and the mare background. However, substantial differences between the observed albedo pattern and the predicted flux remain.  For example, the bright outer lobes are substantially brighter than predicted and the central portion of the anomaly is darker than predicted. This is likely due to an incomplete model of the near-surface field structure.</p><p>Solar wind standoff can explain the large-scale correlation between the Reiner Gamma swirl and the co-located magnetic anomaly. In particular, the outer bright lobes emerge in the simulated weathering pattern only when integrating over the entire lunar orbit, although they are much weaker than observed. Both the proton and helium energy flux to the surface need to be taken into account to best reproduce the swirl pattern. A complete understanding of the solar wind interaction with lunar magnetic anomalies and swirl formation could be vastly improved by low altitude measurements of the magnetic field and solar wind.</p>


1972 ◽  
Vol 9 (3) ◽  
pp. 219-232 ◽  
Author(s):  
R. P. Riddihough

A contoured magnetic anomaly map constructed from aeromagnetic profiles reflects the established tectonic patterns of the Fennoscandian region and permits speculations about such features as continental discontinuities colinear with oceanic fracture zones. An interpretation of the most outstanding magnetic anomaly of the region, in west-central Sweden, shows that its source is associated with a Precambrian anorogenic complex and has an unusually high magnetization. Magnetic similarities between the Baltic and Canadian shields are briefly discussed.


Author(s):  
Muhammad Irsyad ◽  
Sutrisno Sutrisno ◽  
Dwi Haryanto

Abstrak. Batuan merupakan benda yang berasal dari magma yang mendingin di dalam bumi. Untuk mengetahui kondisi batuan perlu di lakukan penelitian. Mamuju merupakan daerah yang sedang hangat dalam perbincangan peneliti tentang bagaimana kandungan di bawah permukaan daerah Mamuju, Sulawesi Barat. Daerah ini juga merupakan daerah yang diteliti oleh instansi-instansi pemerintah termasuk PTBGN-BATAN. Penelitian ini bertujuan untuk melakukan pemodelan bawah permukaan bumi. Tujuannya untuk memberikan informasi tentang kondisi baik itu bentuk maupun kedalaman batuan. penelitian ini menggunakan metode magnetik dan metode ini merupakan metode yang tepat untuk membuat model bawah permukaan bumi. Hasil interpretasi kualitatif diperoleh peta kontur intensitas magnetik total dan anomali magnetik. Peta kontur intensitas magnetik total memiliki nilai sebesar 41286,5 – 42280 nT. Sedangkan anomali magnetik memiliki nilai -760,1 – 231,8 nT. Daerah A dan daerah B merupakan daerah yang memiliki anomali tinggi. Hasil interpretasi kuantitatif didapat ada 4 model bawah permukaan yang masing-masing terdapat batuan yang sama yaitu batuan breksi dengan nilai suseptibilitas 0,0006 – 0,00075 satuan cgs dan batuan lava dengan nilai suseptibilitas 0.001 – 0.0015 satuan cgs. daerah yang dilakukan pemodelan fokus pada daerah Hulu Mamuju, hal ini disebabkan karena menurut peta kontur daerah tersebut merupakan daerah yang memiliki anomali magnetik yang tinggi.   Abstract. The rocks are objects derived from the magma cooled in the earth. To determine the condition of the rock is necessary to do research. Mamuju is an area that is warm in conversation investigators about how the content of subsurface area Mamuju, West Sulawesi. This area is also the area investigated by government agencies including PTBGN-BATAN. This study aimed to modeling subsurface. The goal is to provide information about the condition of both the shape and depth of rock. This study uses a magnetic method and this method is an appropriate method to create a model of the earth's subsurface. Qualitative interpretation of results obtained contour map of total magnetic intensity and magnetic anomalies. The total magnetic intensity contour map has a value of 41286.5 to 42280 nT. While the magnetic anomaly has a value of -760.1 - 231.8 nT. Area A and area B is an area that has a high anomaly. Results obtained quantitative interpretation there are 4 models of the subsurface that each contained the same rock is rock breccia with values susceptibility of 0.0006 to 0.00075 cgs units and lava rock with susceptibility value 0.001 - 0.0015 cgs unit. modeling area focuses on upstream area Mamuju, this is because according to the contour map of the area is an area that has a high magnetic anomaly.


1992 ◽  
Vol 170 (1) ◽  
pp. 127-141 ◽  
Author(s):  
CHARLES WALCOTT

Homing pigeons from our old lofts at Fox Ridge Farm in Lincoln, MA, were disoriented when released at places where the earth's magnetic field was irregular-so-called ‘magnetic anomalies’. The orientation of pigeons raised in our lofts at Cornell in Ithaca, NY, was unaffected by anomalies. Further experiments in Lincoln showed that sibling pigeons raised and trained to lofts only 2.5 km apart behaved differently when released at a strong magnetic anomaly. Pigeons from the loft situated in a magnetic gradient of 450 nT km−1 were disoriented at anomalies, whereas birds raised in a loft in a magnetic gradient of 88nT km−1 were well oriented. This suggests that the location of the home loft may play an important role in determining which cues pigeons use for their navigation, and that these cues are learned sometime after weaning from their parents at 4–6 weeks after hatching.


Author(s):  
William Lowrie

The Earth is surrounded by a magnetic field, which originates inside its molten core, and which for centuries has helped travellers to navigate safely across uncharted regions. The magnetic field protects life on the Earth by acting as a shield against harmful radiation from space, especially from the Sun. ‘The Earth’s magnetic field’ explains that the magnetic field at the Earth’s surface is dominantly that of an inclined dipole. The Sun’s deforming effect on the magnetic field outside the Earth is described, as are the magnetic fields of other planets. The magnetism of rocks forms the basis of palaeomagnetism, which explains how plate tectonics displaced the continents and produced oceanic magnetic anomalies whenever the geomagnetic field reversed polarity.


1958 ◽  
Vol 8 (1) ◽  
pp. 160-162 ◽  
Author(s):  
A. Beiser

Sign in / Sign up

Export Citation Format

Share Document