Porosity from seismic data: A geostatistical approach

Geophysics ◽  
1988 ◽  
Vol 53 (10) ◽  
pp. 1263-1275 ◽  
Author(s):  
Philippe M. Doyen

Using a geostatistical technique called cokriging, the areal distribution of porosity is estimated first in a numerically simulated reservoir model, then in an oil‐bearing channel‐sand of Alberta, Canada. The cokriging method consistently integrates 3-D reflection seismic data with well measurements of the porosity and provides error‐qualified, linear mean square estimates of this parameter. In contrast to traditional seismically assisted porosity mapping techniques that treat the data as spatially independent observations, the geostatistical approach uses spatial autocorrelation and crosscorrelation functions to model the lateral variations of the reservoir properties. In the simulated model, the experimental root‐mean square porosity error with cokriging is 50 percent smaller than the error in predictions relying on a least‐squares regression of porosity on seismically derived transit time in the reservoir interval. In the Alberta reservoir, a cross‐validation study at the wells demonstrates that the cokriging procedure is 20 percent more accurate, in a mean square sense, than a standard regression method, which accounts only for local correlations between porosity and seismically derived impedances. In both cases, cokriging capitalizes on areally dense seismic measurements that are indirectly related to porosity. As a result, when compared to estimates obtained by interpolating the well data, this technique considerably improves the spatial description of porosity in areas of sparse well control.

Author(s):  
B. V. Platov ◽  
◽  
A. N. Kolchugin ◽  
E. A. Korolev ◽  
D. S. Nikolaev ◽  
...  

A feature of the oil-bearing carbonate deposits of the lower Pennsylvanian in the east of the Russian platform is their rapid vertical and horizontal change. It is often difficult to make correlations between sections, especially in the absence of core data when using only geophysical data. In addition, not all facies are reliably identified and traceable from log data and not all have high reservoir properties. Authors made an attempt to trace the promising facies both to adjacent wells and, in general, to the entire field area using core study results and translation of these results using log and seismic data. The data showed pinching of rocks with high reservoir characteristics in the direction of the selected profile (from south to north within the field). Coastal shallow water facies, represented by Grainstones and Packstones, with high reservoir properties in the south of the field, are replaced by lagoon facies and facies of subaerial exposures, represented by Wakestones and Mudstones with low reservoir characteristics, in the north of the field. The authors suggest that this approach can be applicable for rocks both in this region and for areas with a similar structure. Keywords: pinch-out; well data; seismic data; limestone; facies; reservoir rocks.


Author(s):  
Finn Dalhoff ◽  
James A. Chalmers ◽  
Henrik Nøhr-Hansen ◽  
Jan A. Rasmussen ◽  
Emma Sheldon ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Dalhoff, F., Chalmers, J. A., Nøhr-Hansen, H., Rasmussen, J. A., Sheldon, E., & Gregersen, U. (2002). A multidisciplinary study of the Palaeogene succession offshore southern West Greenland. Geology of Greenland Survey Bulletin, 191, 90-96. https://doi.org/10.34194/ggub.v191.5134 _______________ A project with the aim of amalgamating an interpretation of reflection seismic data from offshore southern West Greenland with a new interpretation of well data was finalised at the Geological Survey of Denmark and Greenland (GEUS) in 2001 (Chalmers et al. 2001b). As part of this study, seismic and depositional sequences between major regional unconformities of Danian and mid-Eocene age were delineated and dated. New palaeoenvironmental and sedimentological interpretations using dinoflagellate cyst, microfossil and nannoplankton stratigraphies and palaeoenvironmental interpretations from the five exploration wells drilled offshore West Greenland in the 1970s have been combined with a revised interpretation of lithology and correlated with the aid of seismic stratigraphy. The Qulleq-1 well drilled in 2000 was relinquished late in the project period (Christiansen et al. 2002, this volume), and it has therefore only been possible to incorporate biostratigraphic information from this well into the project.


2017 ◽  
Vol 17 (1) ◽  
pp. 25
Author(s):  
Fitri Rizqi Azizah ◽  
Puguh Hiskiawan ◽  
Sri Hartanto

Oil and natural gas as a fossil fuel that is essential for human civilization, and included in nonrenewable energy, making this energy source is not easy for updated availability. So that it is necessary for exploration and exploitation reliable implementation. Seismic exploration becomes the method most widely applied in the oil, in particular reflection seismic exploration. Data wells (depth domain) and seismic data (time domain) of reflection seismic survey provides information wellbore within the timescale. As for the good interpretation needed information about the state of the earth and is able to accurately describe the actual situation (scale depth). Conversion time domain into the depth domain into things that need to be done in generating qualified exploration map. Method of time-depth curve to be the method most preferred by the geophysical interpreter, in addition to a fairly short turnaround times, also do not require a large budget. Through data information check-shot consisting of the well data and seismic data, which is then exchanged plotted, forming a curve time-depth curve, has been able to produce a map domain depth fairly reliable based on the validation value obtained in the range of 54 - 176m difference compared to the time domain maps previously generated.Keywords: Energy nonrenewable, survei seismik, peta domain waktu, peta domain kedalaman, time-depth curve


2020 ◽  
Vol 60 (2) ◽  
pp. 685
Author(s):  
Said Amiribesheli ◽  
Joshua Thorp ◽  
Julia Davies

Most of the discovered hydrocarbons in the Browse Basin occurred within the Mesozoic intervals, while deeper Paleozoic sequences have been seldom explored. Lack of Paleozoic exploration in the Browse Basin has been attributed to the lack of well penetrations, poor understanding of the petroleum systems and paucity of seismic data. The onshore Canning Basin with several commercial fields and discoveries is the most appropriate analogue for understanding the Paleozoic sequences in the region. With the integration of geophysical data (i.e. gravity, magnetic and seismic), well data and geology, the Paleozoic prospectivity of the Browse Basin can be further enlightened. Modern long offset (8 m) Vampire 2D seismic data were acquired by Searcher to address some of the complex challenges in the Browse Basin. Reservoir quality of the Brewster Formation, volcanic discrimination within the Plover Formation and identification of deeper Triassic and Paleozoic plays are some examples of these challenges in the Browse Basin. Recently Searcher reprocessed this regionally important Vampire 2D seismic dataset that ties to 60 wells. The broadband pre-stack depth migration reprocessed data were inverted to extract three petro-elastic properties of acoustic impedance, Vp/Vs and density by three-term amplitude versus offset inversion algorithm to improve imaging of deeper plays and delineate reservoir properties. This paper discusses how several potential Paleozoic reservoir-seal pairs can be identified in the Browse Basin by utilising the integration of Vampire 2D seismic data, quantitative interpretation products, regional geology and knowledge of the Canning Basin’s fields and discoveries. Previously there was little exploration of Paleozoic plays because they could not be imaged on seismic data. The potential Paleozoic reservoirs identified in this study include Permo-Carboniferous subcrop, Carboniferous-Devonian anticline and Carboniferous-Devonian rollover plays.


1989 ◽  
Vol 26 (8) ◽  
pp. 1517-1532 ◽  
Author(s):  
F. Marillier ◽  
J. Verhoef

We have determined crustal thickness in the Gulf of St. Lawrence, an area that corresponds to an offset of the main northern Appalachians units. A "complete" Bouguer anomaly was calculated from recent depth-to-basement compilations and sediment densities from well data. The Moho surface was obtained by inverting the Bouguer anomaly, assuming a single density contrast at depth, and using an average depth provided by deep reflection seismic data. The resulting crustal model shows a Moho depth of 42–44 km beneath the Grenville Craton, north of the Appalachian deformation front. South of this front, the depth to Moho displays a pronounced thinning of the crust beneath the Carboniferous Magdalen Basin. This is in striking contrast to the deep seismic data, which give a Moho depth of about 43 km. The modelling of the Bouguer anomaly in the Magdalen Basin, taking into account the seismic reflection and refraction data, reconciles these different results and suggests that a 43 km deep Moho beneath the basin is associated with a lower crustal layer about 13 km thick, with high velocity (7.35 km/s) and density (3.05 g/cm3). The Bouguer anomaly suggests that the lateral extent of this high-density layer is confined roughly to the Magdalen Basin. We suggest that this layer is due to mantle underplating of the crust as a result of the Carboniferous-age formation of the Magdalen Basin, and that it is not a feature related to the early to middle Paleozoic development of the Appalachian Orogen.


2011 ◽  
Vol 51 (2) ◽  
pp. 681
Author(s):  
Frank Glass ◽  
Stephan Gelinsky ◽  
Irene Espejo ◽  
Teresa Santana ◽  
Gareth Yardley

Shell Development Australia is a major asset holder in the Browse Basin and the Carnarvon Basin in the North West Shelf of Australia. In 2007, Shell Development Australia embarked on an integrated quantitative seismic interpretation project related to the Triassic Mungaroo Formation in the Carnarvon Basin. The main objective was to constrain the uncertainties in using seismic data as a predictor for rock and fluid properties of fields and prospects in the basin. This project followed a workflow that has been proven in other basins around the world, whereby the vertical and lateral variability of rock properties of both reservoir and non-reservoir lithologies are captured in general trends. The calculated trends are based on well log extractions of end member lithologies and the input of petrographic information and forward modelling. In combination with a regionally consistent 3D burial model for the estimation of remaining porosity, these established rock trends then allow for a prediction of various acoustic responses of reservoir and pore fill properties. The comparisons between the pre-drill predicted rock properties and the properties encountered after drilling at different reservoir levels have lead to a general confidence that the reservoir properties can be derived from seismic data where well data are not abundant. This increased confidence will play a major part in Shell’s attitude towards appraisal activities and decisions on various development options.


2019 ◽  
Vol 38 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Sara R. Grant ◽  
Matthew J. Hughes ◽  
O. J. Olatoke ◽  
Neil Philip

Estimation of reservoir properties and facies from seismic data is a well-established technique, and there are numerous methods in common usage. Our 1D stochastic inversion process (ODiSI), based on matching large numbers of pseudowells to color-inverted angle stacks, produces good estimations of reservoir properties, facies probabilities, and associated uncertainties. Historically, ODiSI has only been applied to siliciclastic reservoir intervals. However, the technique is equally suited to carbonate reservoirs, and ODiSI gives good results for the Mishrif Reservoir interval in the Rumaila Field in Iraq. Of course, a thorough awareness of the quality of all input well data and detailed validation of the parameters input to the inversion process is crucial to understanding the accuracy of the results.


2003 ◽  
Vol 82 (4) ◽  
pp. 313-324
Author(s):  
L.J.H. Alberts ◽  
C.R. Geel ◽  
J.J. Klasen

AbstractPetroleum geologists always need to deal with large gaps in data resolution and coverage during reservoir characterisation. Seismic data show only large geological structures, whereas small-scale structures and reservoir properties can be observed only at well locations. In the area between wells, these properties are often estimated by means of geostatistics. Numerical simulation of sedimentary processes offers an alternative method to predict these properties and can improve the understanding of the controls on reservoir heterogeneity. Although this kind of modelling is widely used on basin scale in exploration geology, its application on field scale in production geology is virtually non-existent. We have assessed whether the recent developments in numerical modelling can also aid petroleum geologists in the interpretation of the reservoir geology.Seismic data, well data and a process-response model for coastal environments were used to characterise the Lower Cretaceous oil-bearing Rijn Field. Interpretation of seismic and well data led to a definition of the structural setting and the depositional model of the Rijn Member in the area. From the sedimentological interpretation the sea-level history could be estimated, which is the one of the most important input parameters for the process-response model.Application of the process-response simulator to the Rijn Field resulted in approval of the depositional model. The output was presented in a 2-dimensional north-south profile, which corresponds very well to the well logs along this section. The results demonstrate that numerical simulations of geological processes can be very useful as a tool to explore many likely geological scenarios. While it cannot be used to supply a unique solution in many cases, it forms a helpful guide during reservoir characterisation to find an optimal scenario of the controls on deposition of the Rijn Member, which contributes to the understanding of the inter-well reservoir heterogeneity.


2020 ◽  
pp. 36-52
Author(s):  
I. A. Kopysova ◽  
A. S. Shirokov ◽  
D. V. Grandov ◽  
S. A. Eremin ◽  
E. N. Zhilin

The use of the method of seismic data acoustic inversion, in the presence of thick gas cap, can lead to difficulties when building background models of elastic parameters. In this regard, in the conditions of acoustically contrast thin environments within the perimeter of the Russkoye oil and gas condensate field, in addition to the standard version based on the well data, the authors considered a number of modified techniques ("block", "flat", and background models). The use of these background models provided the best results and made it possible to significantly improve the quality of predicting rock properties; based on the drilling results, effective penetration was ensured at 66 %, which was 102 % of the plan. Also, based on the inversion results, it became possible to predict reservoir properties using the Bayesian lithotype classification method.


Sign in / Sign up

Export Citation Format

Share Document