Seismic lithostratigraphy of deep subsalt Permo‐Carboniferous gas reservoirs, Northwest German Basin

Geophysics ◽  
1990 ◽  
Vol 55 (10) ◽  
pp. 1357-1365 ◽  
Author(s):  
M. E. Mathisen ◽  
M. Budny

Recent improvements in land seismic data quality have made it possible to initiate lithostratigraphic interpretations of deep (4000–5500 m; 2.2–2.8 s) subsalt Permo‐Carboniferous gas reservoirs in the Northwest German Basin. The first modeling and interpretation results indicate that the reflection character of Permian reservoir dolomites and sandstones can be interpreted to predict lithology and porosity variations using reflection character analysis. These formations are commonly thick enough to be resolved (>20 m) and typically have velocities 1000 to 2000 m/s slower than overlying and underlying nonreservoir rocks. Deeper Upper Carboniferous reservoir sandstones occur within a discontinuous low‐amplitude seismic facies which can be clearly differentiated from a continuous high‐amplitude facies formed by the less prospective Upper Carboniferous coal measures. The accuracy of Permian reflection character interpretations is dependent on the availability of high‐frequency, zero‐phase, relative amplitude seismic data. New 3-D data are appropriate but of limited availability. To provide suitable 2-D data, wavelet processing of selected variable vintage lines was completed. More routine use of wavelet processing and lithostratigraphic interpretation methods should help to better define reservoir facies and stratigraphic traps, lower prospect risk, and increase success ratios.

2021 ◽  
Author(s):  
Bruna Teixeira Pandolpho ◽  
Antonio Henrique da Fontoura Klein ◽  
Isadora Dutra ◽  
Michel M. Mahiques ◽  
Adriano R. Viana ◽  
...  

<p>A new mixed turbidite-contourite system is described in the northern Campos Basin, southeastern Brazilian margin. This system is developed in a middle slope setting and was formed through non-synchronous interaction between the turbidity current and a contour current in the same stratigraphic interval (Miocene). Different depositional cycles were accounted based on their diagnostic seismic features. Seismic attributes, seismic facies, and isochron maps were used to identify alternating cycles of downslope and alongslope processes in the study area, along with the intermediate stage with features from both processes (mixed system). Seismic units were then associated with the dominant type of current. Depositional processes resulted from alongslope current activity can be distinguished from the downslope current activity, based on the acoustic characteristics (root-mean-square (RMS) amplitude values), internal architecture, and external geometry pattern. While alongslope currents deposits consist of mainly low RMS amplitude values clinoforms with an alongslope trend; the downslope gravity deposits present high-amplitude or chaotic seismic facies, usually higher values of RMS amplitude, channel or channel-lobe features, erosive surfaces, and a basinward depositional trend. The first and oldest seismic unit (S1) was interpreted as a dominantly alongslope system, with aggrading sigmoidal clinoforms and high-frequency, low-amplitude reflections commonly associated with fine-grained sedimentary deposits, typical of a plastered drift. Basinward mass transport deposit derived from previous drift instability are often identified. Seismic unit S2 represents the intermediate stage where both gravity-driven and along-slope currents act asynchronously. It is referred to as a mixed turbidite-contourite sequence that shows high-amplitude sediment waves migrating upslope and a moat feature carved in its upslope front. The interfingering between high- and low-amplitude reflectors, distal chaotic facies, together with sediment waves and a channel moat, points to a sand-rich deposit reworked by northward-flowing contour currents. Seismic units S3 and S4 show downslope features with chaotic facies (S3) and paleochannels with coarse basal lag deposits interpreted after the high RMS amplitude values (S4). In S4, a series of long-lived submarine channels formed. The last seismic unit, S5, referred to as the second plastered drift sequence, is marked by low-amplitude clinoforms that thin basinward. Important information on the paleocurrents' direction was also made based on the final deposits display (e.g. terraces, sediment waves, paleochannels), where a northward-flowing bottom current was assumed. Research on alternating dominant processes and transitional stages or mixed depositional systems may provide a better understanding of deep-water depositional processes. Because these processes do not always fit previous depositional models that are mainly described for synchronous systems, new insights on cyclic non-synchronous mixed systems can improve our understanding of how mixed systems are organized through time and space. We can also determine which were the dominant processes that controlled the sedimentation by indicating periods where the margin was mostly submitted to sediment transfer from continent to the basin and periods where the oceanic currents prevailed by redistributing sediments along the isobaths and replacing the axis of downslope transfer conduits. Setting new models on cyclic deposits and intermediate stages can have a future economic impact on potential hydrocarbon reservoir architecture.</p>


2018 ◽  
Vol 6 (4) ◽  
pp. SO1-SO15 ◽  
Author(s):  
Yintao Lu ◽  
Wei Li ◽  
Shiguo Wu ◽  
Bryan T. Cronin ◽  
Fuliang Lyu ◽  
...  

Two isolated Neogene carbonate platforms (Xisha and Guangle carbonate platforms) have developed in the rifted uplifts since the Early Miocene. A large-scale submarine canyon system, the Zhongjian Canyon (ZJC), has developed in the tectonic depression between the two platforms since the Middle Miocene. High-resolution bathymetry data and 2D and 3D seismic data reveal the existence of the ZJC on the present seafloor, as well as in Neogene intervals. It exhibits typical characteristics of deepwater canyons that cut the surrounding rocks and indicate strong erosional features. The ZJC resulted from northwest–southeast strike-slip fault activities during synrift and postrift stages, and it periodically grew during the development of carbonate platforms since the Middle Miocene. We identified four cycles of parallel to subparallel high amplitude and dim reflectors in seismic data, which we interpreted as alternating canyon fill, based on the interpretation of seismic facies. Thus, the sedimentary evolution of the ZJC can be divided into four typical stages, which were in the Middle Miocene, Late Miocene, Early Pliocene, and Pleistocene. Considering the tectonic background of the carbonate platforms, as well as the on-going igneous activities, the sediment filling the canyon could be derived from a mixture of carbonate clasts, igneous clasts, mud, and silt. The laminar high-amplitude reflectors and dim-reflector package represented a fining-upward sedimentary cycle. The coarse-grained sediment in canyon fillings could be turbidites, carbonate debrites, and even igneous clasts. In contrast, the fine-grained sediment is likely to be dominated by pelagic to hemipelagic mud, and silt. This case study describes a deepwater canyon under a carbonate-dominated sedimentary environment and has significant implications for improving our knowledge of periplatform slope depositional processes. Furthermore, the insight gained into periplatform slope depositional processes can be applied globally.


2016 ◽  
Vol 4 (4) ◽  
pp. T455-T459 ◽  
Author(s):  
J. Helen Isaac ◽  
Don C. Lawton

A baseline 3D3C seismic survey was acquired in May 2014 at a Field Research Station in Southern Alberta, Canada, which is the site of experimental [Formula: see text] injection into an Upper Cretaceous sandstone at approximately 300 m depth. We have created synthetic seismograms from sonic and density logs to identify reflectors seen on the processed seismic data. The high-amplitude positive response (peak) at the top of the Upper Cretaceous Milk River Formation sandstone on the normal incidence PP synthetic seismogram does not match the response seen on the migrated PP seismic data, which is a very low amplitude peak. For such a high impedance, low Poisson’s ratio sandstone, the Zoeppritz equations predict a high-amplitude reflection coefficient at zero offset, then a decrease in amplitude, and even a change in polarity with increasing source-receiver offset. To match the stacked seismic data better, we have created offset synthetic seismograms using P- and S-wave sonic logs and density logs. The character of the top Milk River reflection on the seismic data stacked using all offset traces resembles that observed on the stacked offset synthetic seismogram, which is a similar low-amplitude peak. The character of the top Milk River reflection on the seismic data stacked using only near-offset traces to 250 m looks like that seen on the normal incidence synthetic seismogram.


1992 ◽  
Vol 32 (1) ◽  
pp. 171
Author(s):  
L.R. Miller ◽  
W.J. Stuart

A possible submarine fan system of Valanginian age occurs in the south of the western half of Permit WA-212-P in the Browse Basin. Seismic mapping and interpretation have allowed the recognition of five seismic facies which are considered representative of this fan system.The five seismic facies are the upper-middle fan braided channel facies, the upper-middle fan braided interchannel facies, the lower fan channel facies, the lower fan sheet facies, and the lower fan lobe fringe facies. The reflections of the upper-middle braided channel fan facies are discontinuous, disrupted, convex up, low amplitude and high frequency. The interchannel facies has reflections that are concave up, continuous, low frequency and moderate to high amplitude. The lower fan channel facies are recognised by convex up, discontinuous, high frequency and low amplitude reflections. The lower fan sheet facies is noted by mounded configurations with continuous, moderate to high amplitude, moderate frequency reflections. The lower fan lobe fringe facies reflections are flat, often shingled reflections with moderate discontinuity, moderate to high amplitude and low to moderate frequency.Since no wells penetrate the submarine fan, the interpretation is based on seismic reflection configurations which are considered typical of submarine fan segments. The interpreted ancient submarine fan occurs on the basin floor adjacent to a probable ramp type margin, and manifests shape and setting consistent with known submarine fans, such as the Eocene Frigg Fan of the North Sea, and the Lower Cretaceous Barrow Group turbidites in the Carnarvon Basin.Seismic facies mapping, in conjunction with sequence stratigraphy concepts, is particularly useful in areas such as the Browse Basin where considerable marine shale sections exist with little structure, and sequences with reservoir potential continue to be a problem to locate. For instance, in Caswell-1, a well drilled in 1977 immediately north of the permit area, 200 barrels of oil flowed from thin sands within a shale sequence of Albian age. Results of this study indicate that local seismic reflection signatures may be indicative of potential sandstone reservoirs in the vicinity of the study area.


2019 ◽  
Vol 7 (2) ◽  
pp. T467-T476 ◽  
Author(s):  
Carlos Jesus ◽  
Maria Olho Azul ◽  
Wagner Moreira Lupinacci ◽  
Leandro Machado

Carbonate mounds, as described herein, often present seismic characteristics such as low amplitude and a high density of faults and fractures, which can easily be oversampled and blur other rock features in simple geobody extraction processes. We have developed a workflow for combining geometric attributes and hybrid spectral decomposition (HSD) to efficiently identify good-quality reservoirs in carbonate mounds within the complex environment of the Brazilian presalt zone. To better identify these reservoirs within the seismic volume of carbonate mounds, we divide our methodology into four stages: seismic data acquisition and processing overview, preconditioning of seismic data using structural-oriented filtering and imaging enhancement, calculation of seismic attributes, and classification of seismic facies. Although coherence and curvature attributes are often used to identify high-density fault and fracture zones, representing one of the most important features of carbonate mounds, HSD is necessary to discriminate low-amplitude carbonate mounds (good reservoir quality) from low-amplitude clay zones (nonreservoir). Finally, we use a multiattribute facies classification to generate a geologically significant outcome and to guide a final geobody extraction that is calibrated by well data and that can be used as a spatial indicator of the distribution of good reservoir quality for static modeling.


2013 ◽  
Vol 31 (4) ◽  
pp. 619 ◽  
Author(s):  
Luiz Eduardo Soares Ferreira ◽  
Milton José Porsani ◽  
Michelângelo G. Da Silva ◽  
Giovani Lopes Vasconcelos

ABSTRACT. Seismic processing aims to provide an adequate image of the subsurface geology. During seismic processing, the filtering of signals considered noise is of utmost importance. Among these signals is the surface rolling noise, better known as ground-roll. Ground-roll occurs mainly in land seismic data, masking reflections, and this roll has the following main features: high amplitude, low frequency and low speed. The attenuation of this noise is generally performed through so-called conventional methods using 1-D or 2-D frequency filters in the fk domain. This study uses the empirical mode decomposition (EMD) method for ground-roll attenuation. The EMD method was implemented in the programming language FORTRAN 90 and applied in the time and frequency domains. The application of this method to the processing of land seismic line 204-RL-247 in Tacutu Basin resulted in stacked seismic sections that were of similar or sometimes better quality compared with those obtained using the fk and high-pass filtering methods.Keywords: seismic processing, empirical mode decomposition, seismic data filtering, ground-roll. RESUMO. O processamento sísmico tem como principal objetivo fornecer uma imagem adequada da geologia da subsuperfície. Nas etapas do processamento sísmico a filtragem de sinais considerados como ruídos é de fundamental importância. Dentre esses ruídos encontramos o ruído de rolamento superficial, mais conhecido como ground-roll . O ground-roll ocorre principalmente em dados sísmicos terrestres, mascarando as reflexões e possui como principais características: alta amplitude, baixa frequência e baixa velocidade. A atenuação desse ruído é geralmente realizada através de métodos de filtragem ditos convencionais, que utilizam filtros de frequência 1D ou filtro 2D no domínio fk. Este trabalho utiliza o método de Decomposição em Modos Empíricos (DME) para a atenuação do ground-roll. O método DME foi implementado em linguagem de programação FORTRAN 90, e foi aplicado no domínio do tempo e da frequência. Sua aplicação no processamento da linha sísmica terrestre 204-RL-247 da Bacia do Tacutu gerou como resultados, seções sísmicas empilhadas de qualidade semelhante e por vezes melhor, quando comparadas as obtidas com os métodos de filtragem fk e passa-alta.Palavras-chave: processamento sísmico, decomposição em modos empíricos, filtragem dados sísmicos, atenuação do ground-roll.


2020 ◽  
Vol 11 (1) ◽  
pp. 219
Author(s):  
Jing Zeng ◽  
Alexey Stovas ◽  
Handong Huang ◽  
Lixia Ren ◽  
Tianlei Tang

Paleozoic marine shale gas resources in Southern China present broad prospects for exploration and development. However, previous research has mostly focused on the shale in the Sichuan Basin. The research target of this study is expanded to the Lower Silurian Longmaxi shale outside the Sichuan Basin. A prediction scheme of shale gas reservoirs through the frequency-dependent seismic attribute technology is developed to reduce drilling risks of shale gas related to complex geological structure and low exploration level. Extracting frequency-dependent seismic attribute is inseparable from spectral decomposition technology, whereby the matching pursuit algorithm is commonly used. However, frequency interference in MP results in an erroneous time-frequency (TF) spectrum and affects the accuracy of seismic attribute. Firstly, a novel spectral decomposition technology is proposed to minimize the effect of frequency interference by integrating the MP and the ensemble empirical mode decomposition (EEMD). Synthetic and real data tests indicate that the proposed spectral decomposition technology provides a TF spectrum with higher accuracy and resolution than traditional MP. Then, a seismic fluid mobility attribute, extracted from the post-stack seismic data through the proposed spectral decomposition technology, is applied to characterize the shale reservoirs. The application result indicates that the seismic fluid mobility attribute can describe the spatial distribution of shale gas reservoirs well without well control. Based on the seismic fluid mobility attribute section, we have learned that the shale gas enrich areas are located near the bottom of the Longmaxi Formation. The inverted velocity data are also introduced to further verify the reliability of seismic fluid mobility. Finally, the thickness map of gas-bearing shale reservoirs in the Longmaxi Formation is obtained by combining the seismic fluid mobility attribute with the inverted velocity data, and two favorable exploration areas are suggested by analyzing the thickness, structure, and burial depth. The present work can not only be used to evaluate shale gas resources in the early stage of exploration, but also help to design the landing point and trajectory of directional drilling in the development stage.


Author(s):  
Patrick Stahl ◽  
G. Nakhaie Jazar

Non-smooth piecewise functional isolators are smart passive vibration isolators that can provide effective isolation for high frequency/low amplitude excitation by introducing a soft primary suspension, and by preventing a high relative displacement in low frequency/high amplitude excitation by introducing a relatively damped secondary suspension. In this investigation a linear secondary suspension is attached to a nonlinear primary suspension. The primary is assumed to be nonlinear to model the inherent nonlinearities involved in real suspensions. However, the secondary suspension comes into action only during a short period of time, and in mall domain around resonance. Therefore, a linear assumption for the secondary suspension is reasonable. The dynamic behavior of the system subject to a harmonic base excitation has been analyzed utilizing the analytic results derived by applying the averaging method. The analytic results match very well in the transition between the two suspensions. A sensitivity analysis has shown the effect of varying dynamic parameters in the steady state behavior of the system.


2021 ◽  
Vol 10 (2) ◽  
pp. 33
Author(s):  
Yujuan Liu ◽  
Qianping Zhang ◽  
Bin Zheng ◽  
Jing Zhang ◽  
Zhaozhao Qu

The reservoir in different parts of buried-hill draping zone is often quite different, so it is of great significance to clarify the reservoir characteristics for exploration and development. Based on core, well logging, seismic data and production data, reservoir characteristics of oil layer Ⅱ in the lower second member of Dongying Formation of L oilfield, Bohai Bay Basin, offshore eastern China are systematically studied. Analyses of seismic facies, well-seismic combination, paleogeomorphology, and sedimentary characteristics are carried out. Sediment source supply, lake level and buried hill basement geomorphology all contribute to reservoir quality. The research suggests that the different parts of buried-hill draping zone can be divided into four types. Reservoir thickness and physical properties vary. The area where the provenance direction is consistent with the ancient valley direction is a favorable location for the development of high-quality reservoirs. Under the guidance of the results, oilfield production practices in L oilfield offshore China are successful. Knowledge gained from study of L oilfield has application to the development of other similar fields.


Sign in / Sign up

Export Citation Format

Share Document