Finite‐impulse‐response reduction‐to‐the‐pole filter

Geophysics ◽  
1998 ◽  
Vol 63 (6) ◽  
pp. 1958-1964 ◽  
Author(s):  
Richard S. Lu

Convolving a finite‐impulse‐response (FIR) filter with a magnetic anomaly map produces a reduction‐to‐the‐pole (RTP) that is superior to that of the conventional Fourier‐transform approach. The conventional approach, in which the map’s Fourier transform is multiplied by the frequency response of the RTP filter, is flawed by not accounting properly for the dimensions of the respective Fourier transforms. The resultant wraparound effect of circular convolution degrades the RTP map. The FIR filter, combined with linear convolution and appropriate choices for dimensions of data and filter, eliminates the wraparound effect, minimizes contamination of the result by noise, and improves stability. These properties are illustrated by a synthetic example and by application to an actual data set.

Author(s):  
S. Rakesh ◽  
K. S. Vijula Grace

Finite impulse response (FIR) filters find wide application in signal processing applications on account of the stability and linear phase response of the filter. These digital filters are used in applications, like biomedical engineering, wireless communication, image processing, speech processing, digital audio and video processing. Low power design of FIR filter is one of the major constraints that researchers are trying hard to achieve. This paper presents the implementation of a novel power efficient design of a 4-tap 16-bit FIR filter using a modified Vedic multiplier (MVM) and a modified Han Carlson adder (MHCA). The units are coded using Verilog hardware description language and simulated using Xilinx Vivado Design Suite 2015.2. The filter is synthesized for the 7-series Artix field programmable gate array with xc7a100tcsg324-1 as the target device. The proposed filter design showed an improvement of a maximum of 57.44% and a minimum of 2.44% in the power consumption compared to the existing models.


2021 ◽  
pp. 204-268
Author(s):  
Victor Lazzarini

This chapter now turns to the discussion of filters, which extend the notion of spectrum beyond signals into the processes themselves. A gentle introduction to the concept of delaying signals, aided by yet another variant of the Fourier transform, the discrete-time Fourier transform, allows the operation of filters to be dissected. Another analysis tool, in the form of the z-transform, is brought to the fore as a complex-valued version of the discrete-time Fourier transform. A study of the characteristics of filters, introducing the notion of zeros and poles, as well as finite impulse response (FIR) and infinite impulse response (IIR) forms, composes the main body of the text. This is complemented by a discussion of filter design and applications, including ideas related to time-varying filters. The chapter conclusion expands once more the definition of spectrum.


2019 ◽  
Vol 9 (9) ◽  
pp. 1950 ◽  
Author(s):  
Qiang Wang ◽  
Yang Yue ◽  
Jian Yao ◽  
Jon Anderson

Coherent in-phase quadrature (IQ) transponders are ubiquitous in the long-haul and the metro optical networks. During the transmission, the coherent signal experiences a bandwidth narrowing effect after passing through multiple reconfigurable optical add-drop multiplexers (ROADMs). The coherent signal also experiences a bandwidth narrowing effect when electrical or optical components of the coherent IQ transponder experience aging. A dynamic method to compensate the bandwidth narrowing effect is thus required. In the coherent optical receiver, signal bandwidth is estimated from the raw analog-to-digital converter (ADC) outputs. By adaptively adjusting the tap coefficients of the finite impulse response (FIR) filter, simple post-ADC FIR filters can increase the resiliency of the coherent signal to the bandwidth narrowing effect. The influence of chromatic dispersion, polarization mode dispersion, and polarization dependent loss are studied comprehensively. Furthermore, the bandwidth information of the transmitted analog signal is fed back to the coherent optical transmitter for signal optimization, and the transmitter-side FIR filter thus changes accordingly.


Author(s):  
Manuel D. Ortigueira ◽  
Juan J. Trujillo

It is well known the difficulties that the Riesz fractional derivative present, as the spatial fractional derivative involved in many models of the dynamics of anomalous processes. The generalized Gru¨nwal-Letnikov fractional derivative is analysed in this paper. Its Laplace and Fourier Transforms are computed and some current results criticized. It is shown that only the forward derivative of a sinusoid exists. This result is used to define the frequency response of a fractional linear system.


1990 ◽  
Vol 62 (17) ◽  
pp. 1768-1777 ◽  
Author(s):  
Gary W. Small ◽  
Amy C. Harms ◽  
Robert T. Kroutil ◽  
John T. Ditillo ◽  
William R. Loerop

Sign in / Sign up

Export Citation Format

Share Document