Permeability characterization of the Soultz and Ogachi large‐scale reservoir using induced microseismicity

Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 204-211 ◽  
Author(s):  
Pascal Audigane ◽  
Jean‐Jacques Royer ◽  
Hideshi Kaieda

Hydraulic fracturing is a common procedure to increase the permeability of a reservoir. It consists in injecting high‐pressure fluid into pilot boreholes. These hydraulic tests induce locally seismic emission (microseismicity) from which large‐scale permeability estimates can be derived assuming a diffusion‐like process of the pore pressure into the surrounding stimulated rocks. Such a procedure is applied on six data sets collected in the vicinity of two geothermal sites at Soultz (France) and Ogachi (Japan). The results show that the method is adequate to estimate large‐scale permeability tensors at different depths in the reservoir. Such an approach provides permeability of the medium before fracturing compatible with in situ measurements. Using a line source formulation of the diffusion equation rather than a classical point source approach, improvements are proposed for accounting in situation where the injection is performed on a well section. This technique applied to successive fluid‐injection tests indicates an increase in permeability by an order of magnitude. The underestimates observed in some cases are attributed to the difference of scale at which the permeability is estimated (some 1 km3 corresponding to the seismic active volume of rock compared to a few meters around the well for the pumping or pressure oscillation tests). One advantage of the proposed method is that it provides permeability tensor estimates at the reservoir scale.

Morphology ◽  
2021 ◽  
Author(s):  
Rossella Varvara ◽  
Gabriella Lapesa ◽  
Sebastian Padó

AbstractWe present the results of a large-scale corpus-based comparison of two German event nominalization patterns: deverbal nouns in -ung (e.g., die Evaluierung, ‘the evaluation’) and nominal infinitives (e.g., das Evaluieren, ‘the evaluating’). Among the many available event nominalization patterns for German, we selected these two because they are both highly productive and challenging from the semantic point of view. Both patterns are known to keep a tight relation with the event denoted by the base verb, but with different nuances. Our study targets a better understanding of the differences in their semantic import.The key notion of our comparison is that of semantic transparency, and we propose a usage-based characterization of the relationship between derived nominals and their bases. Using methods from distributional semantics, we bring to bear two concrete measures of transparency which highlight different nuances: the first one, cosine, detects nominalizations which are semantically similar to their bases; the second one, distributional inclusion, detects nominalizations which are used in a subset of the contexts of the base verb. We find that only the inclusion measure helps in characterizing the difference between the two types of nominalizations, in relation with the traditionally considered variable of relative frequency (Hay, 2001). Finally, the distributional analysis allows us to frame our comparison in the broader coordinates of the inflection vs. derivation cline.


Author(s):  
F. Ma ◽  
J. H. Hwang

Abstract In analyzing a nonclassically damped linear system, one common procedure is to neglect those damping terms which are nonclassical, and retain the classical ones. This approach is termed the method of approximate decoupling. For large-scale systems, the computational effort at adopting approximate decoupling is at least an order of magnitude smaller than the method of complex modes. In this paper, the error introduced by approximate decoupling is evaluated. A tight error bound, which can be computed with relative ease, is given for this method of approximate solution. The role that modal coupling plays in the control of error is clarified. If the normalized damping matrix is strongly diagonally dominant, it is shown that adequate frequency separation is not necessary to ensure small errors.


2021 ◽  
Author(s):  
Weijie Sun ◽  
James Slavin ◽  
Anna Milillo ◽  
Ryan Dewey ◽  
Stefano Orsini ◽  
...  

Abstract At Mercury, several processes can release ions and neutrals out of the planet’s surface. Here we present enhancements of dayside planetary ions in the solar wind entry layer during flux transfer event (FTE) “showers” near Mercury’s northern magnetospheric cusp. In this entry layer, solar wind ions are accelerated and move downward (i.e. planetward) toward the cusps, which sputter upward-moving planetary ions within 1 minute. The precipitation rate is enhanced by an order of magnitude during FTE showers and the neutral density of the exosphere can vary by >10% due to this FTE-driven sputtering. These in situ observations of enhanced planetary ions in the entry layer likely correspond to an escape channel of Mercury’s planetary ions, and the large-scale variations of the exosphere observed on minute-timescales by ground-based telescopes. Comprehensive, future multi-point measurements made by BepiColombo will greatly enhance our understanding of the processes contributing to Mercury’s dynamic exosphere and magnetosphere.


2020 ◽  
Author(s):  
Alessandro Frigeri ◽  
Maria Cristina De Sanctis ◽  
Francesca Altieri ◽  
Simone De Angelis ◽  
Marco Ferrari ◽  
...  

<p>The ExoMars Rover and Surface Platform planned for launch in 2022 is a large international cooperation between the European Space Agency and Roscosmos with a scientific contribution from NASA.  Thales Alenia Space is the ExoMars mission industrial prime contractor. </p> <p>Besides sensors and instruments characterizing the surface at large scale, the ExoMars’ rover Rosalind Franklin payload features some experiments devoted specifically to the characterization of the first few meters of the Martian subsurface. These experiments are particularly critical for the main ExoMars objective of detecting traces of present or past life forms on Mars, which may have been preserved within the shallow Martian underground [1].</p> <p>Rosalind Franklin will be able to perform both non-invasive geophysical imaging of the underground [2] and subsurface <em>in situ</em> measurements thanks to the Drill unit installed on the rover. The Drill has been developed by Leonardo and its purposes are 1) to collect core samples to be analyzed in the Analytical Laboratory Drawer (ALD) onboard the Rover and 2) to drive the miniaturized spectrometer Ma_MISS within the borehole.   </p> <p>Ma_MISS (Mars Multispectral Imager for Subsurface Studies, [3]) will collect mineralogic measurements from the rocks exposed into the borehole created by the Drill with a spatial resolution of 120 μm down to 2 meters into the Martian subsurface.</p> <p>Rocks are composed of grains of minerals, and their reaction to an applied stress is related to the mechanical behavior of the minerals that compose the rock itself. The mechanical properties of a mineral depend mainly on the strength of the chemical bonds, the orientation of crystals, and the number of impurities in the crystal lattice.</p> <p>In this context, the integration of Ma_MISS measurements and drill telemetry are of great importance.  The mechanical properties of rocks coupled with their mineralogic composition provide a rich source of information to characterize the nature of rocks being explored by ExoMars rover’s drilling activity.</p> <p>Within our study, we are starting to collect telemetry recorded during the Drill unit tests on several samples ranging from sedimentary to volcanic rocks with varying degrees of weathering and water content.  In this first phase of the study, we focused our attention on the variation of torque and penetration speed between different samples, which have been found to be indicative of a particular type of rock or group of rocks and their water content.  </p> <p>We are planning to analyze the same rocks with the Ma_MISS breadboard creating the link between the mineralogy and the mechanical response of the Drill.      </p> <p>This will put the base for a more comprehensive and rich characterization of the <em>in situ</em> subsurface observation by Rosalind Franklin planned at Oxia Planum, Mars in 2023. </p> <p> </p> <p><strong>Acknowledgments: </strong>We thank the European Space Agency (ESA) for developing the ExoMars Project, ROSCOSMOS and Thales Alenia Space for rover development, and Italian Space Agency (ASI) for funding the Ma_MISS experiment (ASI-INAF contract n.2017-48-H.0 for ExoMars MA_MISS phase E/science).</p> <p> </p> <p><strong>References</strong></p> <p>[1] Vago et al., 2017. Astrobiology, 17 6-7. [2] Ciarletti et al., 2017. Astrobiology, 17 6-7. [3] De Sanctis et al., 2017. Astrobiology, 17 6-7.</p>


2020 ◽  
Author(s):  
André Brosowski ◽  
Ralf Bill ◽  
Daniela Thrän

Abstract Background: Half of the UN climate target for 2030 has been achieved and further progress requires swiftly implementable solutions. In this context, the fermentation of cereal straw is a promising option. Returning the digestate to the farmland can close agricultural cycles while simultaneously producing biomethane for the transport sector. The world's first large-scale, mono-digestion plant for straw is operational since 2014. The temporal and spatial biomass availability is a key issue when replicating this concept. No detailed calculations on this subject are available, and the strategic relevance of biomethane from straw in the transport sector cannot be sufficiently evaluated.Methods: To assess the balance of straw supply and use, a total of 30 data sets are combined, taking into account the cultivation of the five most important cereal types and the straw required for ten animal species, two special crops and twelve industrial uses. The data are managed at district level and presented for the years 2010 to 2018. In combination with high-resolution geodata, the results are linked to actual arable fields, and the availability of straw throughout the country is evaluated using a GIS.Results: During the analysis period, the mobilisable potential for future biomethane production is between 13.9–21.5 Tg fm a-1; this is up to 62 % higher than the previously known level. The annual potential fluctuates considerably due to weather anomalies. The all-time maximum in 2014 and the minimum for the last 26 years in 2018 are separated by just four years and a difference of 7.6 Tg fm. However, large parts of the potential are concentrated only in a few regions and liquefied biomethane could fully cover the fuel required for vessels, and up to a quarter of that for heavy goods vehicles. Up to 11.3 Tg CO2-eq. could be saved, reducing the difference to achieve the UN climate target by 3.7 %.Conclusion: Despite the strong fluctuations, the potential is sufficient to supply numerous plants and to produce relevant quantities of liquefied biomethane even in weak years. To unlock the potential, the outcomes should be discussed further with stakeholders in the identified priority regions.


2021 ◽  
Author(s):  
Kayley Hake ◽  
Patrick T West ◽  
Kent L. McDonald ◽  
Davis Laundon ◽  
Crystal Feng ◽  
...  

Choanoflagellates offer key insights into bacterial influences on the origin and early evolution of animals. Here we report the isolation and characterization of a new colonial choanoflagellate species, Salpingoeca monosierra, that, unlike previously characterized species, harbors a stable microbiome. S. monosierra was isolated from Mono Lake, California and forms large spherical colonies that are more than an order of magnitude larger than those formed by the closely related S. rosetta. By designing fluorescence in situ hybridization probes from metagenomic sequences, we found that S. monosierra colonies are colonized by members of the halotolerant and closely related Saccharospirillaceae and Oceanospirillaceae, as well as purple sulfur bacteria (Ectothiorhodospiraceae) and non-sulfur Rhodobacteraceae. This relatively simple microbiome in a close relative of animals presents a new experimental model for investigating the evolution of stable interactions among eukaryotes and bacteria.


2019 ◽  
Vol 111 ◽  
pp. 04019
Author(s):  
Arash Rasooli ◽  
Laure Itard

Determination of the thermo-physical characteristics of the buildings’ components is crucial to illustrate their thermal behavior and therefore their energy consumption. Along the same line, accurate determination of the thermal resistance of the building walls falls into one the most important targets. Following the difference between in-lab, and on site thermal performance of walls, in-situ measurements have been highly recommended. The most well-known practice for in-situ measurement of walls’ thermal resistance is the Average Method of ISO 9869, using one heat flux meter and two thermocouples. The method, in comparison with other existing methods is quite straight-forward and therefore, is applied widely in large scale. Despite its simplicity, this method usually needs a relatively long time to reach an acceptable result. The current paper deals with a modification to the ISO 9869 method, making it in many situations much quicker than its original state. Through simulation of walls of different typologies, it is shown in which cases the measurement period becomes longer than expected. It is demonstrated how the addition of a heat flux meter to the aforementioned equipment can lead to a much quicker achievement of the thermal resistance, following the rest of the instructions of the standard method.


2020 ◽  
Author(s):  
Ashwita Chouksey ◽  
Xavier Carton ◽  
Jonathan Gula

<p>In recent years, the oceanographic community has devoted considerable interest to the study of SCVs (Submesoscale Coherent Vortices, i.e. vortices with radii between 2-30 km, below the first internal radius of deformation); indeed, both mesoscale and submesoscale eddies contribute to the transport and mixing of water masses and of tracers (active and passive), affecting the heat transport, the ventilation pathways and thus having an impact on the large scale circulation.</p><p>In different areas of the ocean, SCVs have been detected, via satellite or in-situ measurements, at the surface or at depth. From these data, SCVs were found to be of different shapes and sizes depending on their place of origin and on their location. Here, we will concentrate rather on the SCVs at depth.</p><p>In this study, we use a high resolution simulation of the North Atlantic ocean with the ROMS-CROCO model. In this simulation, we also identify the SCVs at different depths and densities; we analyse their site and mechanism of generation, their drift, the physical processes conducting to this drift and their interactions with the surrounding flows. We also quantify their physical characteristics (radius, thickness, intensity/vorticity, bias in polarity: cyclones versus anticyclones). We provide averages for these characteristics and standard deviations. </p><p>We compare the model results with the observational data, in particular temperature and salinity profiles from Argo floats and velocity data from currentmeter recordings. </p><p>This study is a first step in the understanding of the formation, occurrences and structure of SCVs in the North Atlantic Ocean, of help to improve their in-situ sampling.</p>


2001 ◽  
Vol 58 (11) ◽  
pp. 2149-2155 ◽  
Author(s):  
Stéphane Gauthier ◽  
George A Rose

In situ target strength (TS) is theoretically the optimal measure to scale echo-integration values to fish density. In practice, in situ TS is often biased. The number of fish per sample volume (Nv) has been used to set a threshold density to reduce the bias attributable to multiple targets. However, order of magnitude differences in the Nv threshold have been reported within the theoretical range 0 < Nv [Formula: see text] 1. To investigate the use and scale-dependence of the Nv index, with the objective of achieving unbiased estimates of in situ TS, redfish (Sebastes spp.) aggregations were measured in Newfoundland waters. When averaged over large horizontal distances (large scale), TS was biased upwards if Nv exceeded 0.04. However, TS could be estimated at higher densities without bias using smaller measurement scales. To deal with these scale-dependent variations, we develop diagnostic tools based on Nv and an echo-count index (Tv), which enable unbiased estimates of the Nv threshold and in situ TS.


Sign in / Sign up

Export Citation Format

Share Document