Seismic reservoir mapping from 3‐D AVO in a North Sea turbidite system

Geophysics ◽  
2001 ◽  
Vol 66 (4) ◽  
pp. 1157-1176 ◽  
Author(s):  
P. Avseth ◽  
T. Mukerji ◽  
A. Jørstad ◽  
G. Mavko ◽  
T. Veggeland

We present a methodology for estimating uncertainties and mapping probabilities of occurrence of different lithofacies and pore fluids from seismic amplitudes, and apply it to a North Sea turbidite system. The methodology combines well log facies analysis, statistical rock physics, and prestack seismic inversion. The probability maps can be used as input data in exploration risk assessment and as constraints in reservoir modeling and performance forecasting. First, we define seismic‐scale sedimentary units which we refer to as seismic lithofacies. These facies represent populations of data (clusters) that have characteristic geologic and seismic properties. In the North Sea field presented in this paper, we find that unconsolidated thick‐bedded clean sands with water, plane laminated thick‐bedded sands with oil, and pure shales have very similar acoustic impedance distributions. However, the [Formula: see text] ratio helps resolve these ambiguities. We establish a statistically representative training database by identifying seismic lithofacies from thin sections, cores, and well log data for a type well. This procedure is guided by diagnostic rock physics modeling. Based on the training data, we perform multivariate classification of data from other wells in the area. From the classification results, we can create cumulative distribution functions of seismic properties for each facies. Pore fluid variations are accounted for by applying the Biot‐Gassmann theory. Next, we conduct amplitude‐variation‐with‐offset (AVO) analysis to predict seismic lithofacies from seismic data. We assess uncertainties in AVO responses related to the inherent natural variability of each seismic lithofacies using a Monte Carlo technique. Based on the Monte Carlo simulation, we generate bivariate probability density functions (pdfs) of zero‐offset reflectivity [R(0)] versus AVO gradient (G) for different facies combinations. By combining R(0) and G values estimated from 2‐D and 3‐D seismic data with the bivariate pdfs estimated from well logs, we use both discriminant analysis and Bayesian classification to predict lithofacies and pore fluids from seismic amplitudes. The final results are spatial maps of the most likely facies and pore fluids, and their occurrence probabilities. These maps show that the studied turbidite system is a point‐sourced submarine fan in which thick‐bedded clean sands are present in the feeder‐channel and in the lobe channels, interbedded sands and shales in marginal areas of the system, and shales outside the margins of the turbidite fan. Oil is most likely present in the central lobe channel and in parts of the feeder channel.

Geophysics ◽  
2001 ◽  
Vol 66 (4) ◽  
pp. 988-1001 ◽  
Author(s):  
T. Mukerji ◽  
A. Jørstad ◽  
P. Avseth ◽  
G. Mavko ◽  
J. R. Granli

Reliably predicting lithologic and saturation heterogeneities is one of the key problems in reservoir characterization. In this study, we show how statistical rock physics techniques combined with seismic information can be used to classify reservoir lithologies and pore fluids. One of the innovations was to use a seismic impedance attribute (related to the [Formula: see text] ratio) that incorporates far‐offset data, but at the same time can be practically obtained using normal incidence inversion algorithms. The methods were applied to a North Sea turbidite system. We incorporated well log measurements with calibration from core data to estimate the near‐offset and far‐offset reflectivity and impedance attributes. Multivariate probability distributions were estimated from the data to identify the attribute clusters and their separability for different facies and fluid saturations. A training data was set up using Monte Carlo simulations based on the well log—derived probability distributions. Fluid substitution by Gassmann’s equation was used to extend the training data, thus accounting for pore fluid conditions not encountered in the well. Seismic inversion of near‐offset and far‐offset stacks gave us two 3‐D cubes of impedance attributes in the interwell region. The near‐offset stack approximates a zero‐offset section, giving an estimate of the normal incidence acoustic impedance. The far offset stack gives an estimate of a [Formula: see text]‐related elastic impedance attribute that is equivalent to the acoustic impedance for non‐normal incidence. These impedance attributes obtained from seismic inversion were then used with the training probability distribution functions to predict the probability of occurrence of the different lithofacies in the interwell region. Statistical classification techniques, as well as geostatistical indicator simulations were applied on the 3‐D seismic data cube. A Markov‐Bayes technique was used to update the probabilities obtained from the seismic data by taking into account the spatial correlation as estimated from the facies indicator variograms. The final results are spatial 3‐D maps of not only the most likely facies and pore fluids, but also their occurrence probabilities. A key ingredient in this study was the exploitation of physically based seismic‐to‐reservoir property transforms optimally combined with statistical techniques.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. M25-M36 ◽  
Author(s):  
Mengqiang Pang ◽  
Jing Ba ◽  
José M. Carcione ◽  
Stefano Picotti ◽  
Jian Zhou ◽  
...  

Rock-physics templates establish a link between seismic properties (e.g., velocity, density, impedance, and attenuation) and reservoir properties such as porosity, fluid saturation, permeability, and clay content. We focus on templates based on attenuation (seismic [Formula: see text] or quality factor), which are highly affected by those properties, and we consider carbonate reservoirs that constitute 60% of the world oil reserves and a potential for additional gas reserves. The seismic properties are described with mesoscopic-loss models, such as the White model of patchy saturation and the double double-porosity model, which include frame and fluid heterogeneities. We have performed ultrasonic experiments, and we estimate the attenuation of the samples and the reservoir by using the spectral ratio method and the improved frequency-shift method. Then, multiscale calibrations of the templates are performed by using laboratory, well log, and seismic data. On this basis, reservoir porosity and fluid saturation are quantitatively evaluated. We first apply the templates to ultrasonic data of limestone using the White model. Then, we consider seismic data of a carbonate gas reservoir of MX work area in the Sichuan Basin, southwest China. A survey line in the area is selected to detect the reservoir by using the templates. The results indicate that the estimated porosity and saturation are consistent with well-log data and actual gas production results. The methodology indicates that the microstructural characteristics of a high-quality reservoir can effectively be predicted using seismic [Formula: see text].


2019 ◽  
Vol 7 (2) ◽  
pp. T477-T497 ◽  
Author(s):  
Jørgen André Hansen ◽  
Nazmul Haque Mondol ◽  
Manzar Fawad

We have investigated the effects of organic content and maturation on the elastic properties of source rock shales, mainly through integration of a well-log database from the Central North Sea and associated geochemical data. Our aim is to improve the understanding of how seismic properties change in source rock shales due to geologic variations and how these might manifest on seismic data in deeper, undrilled parts of basins in the area. The Tau and Draupne Formations (Kimmeridge shale equivalents) in immature to early mature stages exhibit variation mainly related to compaction and total organic carbon (TOC) content. We assess the link between depth, acoustic impedance (AI), and TOC in this setting, and we express it as an empirical relation for TOC prediction. In addition, where S-wave information is available, we combine two seismic properties and infer rock-physics trends for semiquantitative prediction of TOC from [Formula: see text] and AI. Furthermore, data from one reference well penetrating mature source rock in the southern Viking Graben indicate that a notable hydrocarbon effect can be observed as an addition to the inherently low kerogen-related velocity and density. Published Kimmeridge shale ultrasonic measurements from 3.85 to 4.02 km depth closely coincide with well-log measurements in the mature shale, indicating that upscaled log data are reasonably capturing variations in the actual rock properties. Amplitude variation with offset inversion attributes should in theory be interpreted successively in terms of compaction, TOC, and maturation with associated generation of hydrocarbons. Our compaction-consistent decomposition of these effects can be of aid in such interpretations.


2020 ◽  
Vol 8 (4) ◽  
pp. T1057-T1069
Author(s):  
Ritesh Kumar Sharma ◽  
Satinder Chopra ◽  
Larry Lines

The discrimination of fluid content and lithology in a reservoir is important because it has a bearing on reservoir development and its management. Among other things, rock-physics analysis is usually carried out to distinguish between the lithology and fluid components of a reservoir by way of estimating the volume of clay, water saturation, and porosity using seismic data. Although these rock-physics parameters are easy to compute for conventional plays, there are many uncertainties in their estimation for unconventional plays, especially where multiple zones need to be characterized simultaneously. We have evaluated such uncertainties with reference to a data set from the Delaware Basin where the Bone Spring, Wolfcamp, Barnett, and Mississippian Formations are the prospective zones. Attempts at seismic reservoir characterization of these formations have been developed in Part 1 of this paper, where the geologic background of the area of study, the preconditioning of prestack seismic data, well-log correlation, accounting for the temporal and lateral variation in the seismic wavelets, and building of robust low-frequency model for prestack simultaneous impedance inversion were determined. We determine the challenges and the uncertainty in the characterization of the Bone Spring, Wolfcamp, Barnett, and Mississippian sections and explain how we overcame those. In the light of these uncertainties, we decide that any deterministic approach for characterization of the target formations of interest may not be appropriate and we build a case for adopting a robust statistical approach. Making use of neutron porosity and density porosity well-log data in the formations of interest, we determine how the type of shale, volume of shale, effective porosity, and lithoclassification can be carried out. Using the available log data, multimineral analysis was also carried out using a nonlinear optimization approach, which lent support to our facies classification. We then extend this exercise to derived seismic attributes for determination of the lithofacies volumes and their probabilities, together with their correlations with the facies information derived from mud log data.


Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1510-1523 ◽  
Author(s):  
Sandra K. Raeuchle ◽  
Douglas S. Hamilton ◽  
M. Uzcátegui

Despite being a mature oil producer, the Budare Field in the Eastern Venezuela Basin offers considerable reserve growth potential because of stratigraphic and structural complexity. Our ability to resolve these complexities was enhanced following acquisition in 1995 of a 3-D seismic data set over a large part of the field. The seismic data were tied by synthetic to well‐log data by several wells having sonic and density information and then integrated with the high‐resolution genetic stratigraphic framework established from well‐log correlations. Two key surfaces identified on the seismic data correlated directly to two stratigraphically defined sequence boundaries, maximum flooding surfaces (MFS) 80 and 100. A third seismic surface correlated approximately with the stratigraphically defined MFS 62. Collectively, these surfaces form fundamental control surfaces from which seismic attribute analysis and imaging from inverse modeling were undertaken. Four depositional trends detected by the seismic imaging and attribute analysis have important implications for reserve growth potential, guiding future field development. An incised valley, filled primarily with thick fluvial sandstones, was detected by mapping average seismic amplitudes between the MFS 62 and 80 markers, and several step‐out drilling locations were identified where the sandstones intersect structurally high positions. The distribution of thick distributary‐mouth‐bar facies, and moreover, the boundary with adjacent thin‐bedded strandplain facies, were similarly detected by mapping average seismic amplitudes in a 35-ms time window below MFS 80. The mouth‐bar facies coincide with the crestal position of a potentially large, structurally defined field extension supporting multiple potential infill wells. Several high‐negative‐amplitude anomalies coinciding with thick fluvial sandstones overlying MFS 62 display faulted boundaries and are interpreted as direct hydrocarbon indicators, providing obvious infill drilling locations, and finally, a marine ravinement surface separating the key oil‐producing reservoirs below MFS 80 was identified by seismic inversion.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. C25-C36 ◽  
Author(s):  
Alexey Stovas ◽  
Martin Landrø ◽  
Per Avseth

Assuming that a turbidite reservoir can be approximated by a stack of thin shale-sand layers, we use standard amplitude variaiton with offset (AVO) attributes to estimate net-to-gross (N/G) and oil saturation. Necessary input is Gassmann rock-physics properties for sand and shale, as well as the fluid properties for hydrocarbons. Required seismic input is AVO intercept and gradient. The method is based upon thin-layer reflectivity modeling. It is shown that random variability in thickness and seismic properties of the thin sand and shale layers does not change significantly the AVO attributes at the top and base of the turbidite-reservoir sequence. The method is tested on seismic data from offshore Brazil. The results show reasonable agreement between estimated and observed N/G and oil saturation. The methodology can be developed further for estimating changes in pay thickness from time-lapse seismic data.


2014 ◽  
Vol 54 (2) ◽  
pp. 532
Author(s):  
Yazeed Altowairqi ◽  
Reza Rezaee ◽  
Milovan Urosevic

Unconventional resources such as shale gas have been an extremely important exploration and production target. To understand the seismic responses of the shale gas plays, the use of rock physical relationship is important, which is constrained with geology and formation-evaluation analysis. Since organic-rich shale seismic properties remains poorly understood, seismic inversion can be used to identify the organic-rich shale from barren shale. This approach helps identify and map spatial distributions and of the organic rich shales. This study shows the acoustic impedance (AI), which is the product of compressional velocity and density, decreases nonlinearly with increasing total organic carbon (TOC) content. TOC is obtained using Roc-Eval pyrolysis for more than 120 core shale samples for the Perth Basin. By converting the AI data to TOC precent on the seismic data, we therefore can map lateral distribution, thickness, and variation in TOC profile. This extended abstract presents a case study of the northern Perth Basin 3D seismic with application of different approaches of seismic inversion and multi-attribute analysis with the rock physical relationships.


Sign in / Sign up

Export Citation Format

Share Document