Three‐dimensional depth imaging with generalized screens: A salt body case study

Geophysics ◽  
2003 ◽  
Vol 68 (4) ◽  
pp. 1132-1139 ◽  
Author(s):  
Jérôme H. Le Rousseau ◽  
Henry Calandra ◽  
Maarten V. de Hoop

We illustrate the performance of the generalized screen propagator on real seismic data for 3D zero‐offset and prestack depth imaging. We use TotalFinaElf's L7D data set from the North Sea, a 3D marine seismic survey that contained limited azimuthal coverage. The subsurface shows significant tectonic deformation, including an intrusive salt body in sedimentary sequences. A transformation to common azimuth is applied prior to the 3D prestack depth imaging procedure. We compare the performance of the generalized screen propagator with that of a hybrid phase shift plus interpolation (PSPI)/split‐step Fourier method. Three‐dimensional prestack results confirm the generalized screen method handles multipathing more accurately. Comparisons are also made with Kirchhoff migration results. The results differ mainly in the fine‐scale irregularities of the image and not in the wavefront set of the image. Using synthetic models of similar structure (the SEG/EAGE salt model), we further illustrate the importance of multipathing and multiple scattering. Overall, our results show that our wave‐equation approach produces better images than the Kirchhoff approach to prestack depth migration; we attribute this mainly to a more complete handling of wave diffraction in the generalized screen expansion, which becomes important in strongly heterogeneous and irregular velocity models such as the ones containing salt bodies.

2021 ◽  
Author(s):  
Olaf Hellwig ◽  
Stefan Buske

<p>The polymetallic, hydrothermal deposit of the Freiberg mining district in the southeastern part of Germany is characterised by ore veins that are framed by Proterozoic orthogneiss. The ore veins consist mainly of quarz, sulfides, carbonates, barite and flourite, which are associated with silver, lead and tin. Today the Freiberg University of Mining and Technology is operating the shafts Reiche Zeche and Alte Elisabeth for research and teaching purposes with altogether 14 km of accessible underground galleries. The mine together with the most prominent geological structures of the central mining district are included in a 3D digital model, which is used in this study to study seismic acquisition geometries that can help to image the shallow as well as the deeper parts of the ore-bearing veins. These veins with dip angles between 40° and 85° are represented by triangulated surfaces in the digital geological model. In order to import these surfaces into our seismic finite-difference simulation code, they have to be converted into bodies with a certain thickness and specific elastic properties in a first step. In a second step, these bodies with their properties have to be discretized on a hexahedral finite-difference grid with dimensions of 1000 m by 1000 m in the horizontal direction and 500 m in the vertical direction. Sources and receiver lines are placed on the surface along roads near the mine. A Ricker wavelet with a central frequency of 50 Hz is used as the source signature at all excitation points. Beside the surface receivers, additional receivers are situated in accessible galleries of the mine at three different depth levels of 100 m, 150 m and 220 m below the surface. Since previous mining activities followed primarily the ore veins, there are only few pilot-headings that cut through longer gneiss sections. Only these positions surrounded by gneiss are suitable for imaging the ore veins. Based on this geometry, a synthetic seismic data set is generated with our explicit finite-difference time-stepping scheme, which solves the acoustic wave equation with second order accurate finite-difference operators in space and time. The scheme is parallelised using a decomposition of the spatial finite-difference grid into subdomains and Message Passing Interface for the exchange of the wavefields between neighbouring subdomains. The resulting synthetic seismic shot gathers are used as input for Kirchhoff prestack depth migration as well as Fresnel volume migration in order to image the ore veins. Only a top mute to remove the direct waves and a time-dependent gain to correct the amplitude decay due to the geometrical spreading are applied to the data before the migration. The combination of surface and in-mine acquisition helps to improve the image of the deeper parts of the dipping ore veins. Considering the limitations for placing receivers in the mine, Fresnel volume migration as a focusing version of Kirchhoff prestack depth migration helps to avoid migration artefacts caused by this sparse and limited acquisition geometry.</p>


2009 ◽  
Vol 49 (1) ◽  
pp. 205
Author(s):  
Mark Thompson ◽  
M Royd Bussell ◽  
Michael Wilkins ◽  
Dave Tapley ◽  
Jenny Auckland

Expansion of the North West Shelf Venture (NWSV) production infrastructure is driving plans for sequential development of the small satellite fields. The desire for additional gas reserves has fuelled increased exploration and appraisal drilling in recent years with encouraging results. The NWSV area is a complex geologic environment with multiple play levels, petroleum systems and trapping styles. Seismic imaging is poor in many areas, primarily due to multiple contamination. In 2004, the NWSV acquired the leading edge, regional Demeter 3D Seismic Survey. Since then, continuous application of improved processing techniques, such as 3D Surface-related Multiple Elimination (SRME) and Pre-Stack Depth Migration (PreSDM), have been key to providing significant imaging enhancements. Exploration drilling based on Demeter data resulted in three significant new gas discoveries. Pemberton–1 (2006) explored Triassic sub-cropping sands in a horst block at the southwestern end of the Rankin Trend. The well encountered an upside gas column due to the presence of intra-Mungaroo Formation shales providing a base-seal trapping geometry. Lady Nora–1 (2007) tested the fault block west of the Pemberton horst and encountered a 102 m gross gas column with gas on rock. The upside result accelerated a near term appraisal opportunity at Lady Nora–2 (2008). Persephone–1 (2006) drilled a down-thrown Legendre Formation dip closure in the Eaglehawk graben. Success relied on the sealing potential of the North Rankin Field bounding fault. In spite of pressure depletion associated with over 20 years of production, Persephone–1 encountered a 151 m gross gas column at virgin pressures and a different gas-water contact to North Rankin. The result demonstrated active and significant fault seal along the major North Rankin Field bounding fault. These recent, successful exploration wells have resulted in identification of follow-up drilling opportunities and a drive for ongoing seismic imaging improvements. The discoveries have material impacts on NWSV development plans for the Greater Western Flank and in the vicinity of the Perseus, North Rankin and Goodwyn gas fields.


2020 ◽  
Author(s):  
Nikita Sandalyuk

<p>The Lofoten Basin is one of the most dynamically unstable regions of the North Atlantic and represents a ‘hot spot’ of the mesoscale eddy activity in the Nordic Seas.  A quasi-stationary, deep, anticyclonic eddy is located in the central part of the basin. One of the key features of the Lofoten Basin circulation is a separation of eddies from the main branch of Norwegian current and their westward propagation towards the central part of the basin. Because of these processes, warm and saline Atlantic waters are transported to the deeper part of the basin. Understanding the physical processes responsible for the water mass transformations in this area is of particular interest in order to apprehend the climate of the region.</p><p>In this study we obtain three-dimensional structures of cyclonic and anticyclonic eddies for the LB region by combining the observational data set covering the 2000-2017 period with satellite altimetry data. The results reveal that significant eddy-induced anomalies are concentrated within a distance of 1 radius of the composite AE and CE and extend vertically to the depth of 1000 m. The core of the composite AE is located in the 200-400 m while the composite CE has a double-core structure with the maximum anomalies centered in the upper layer above 100 m and a negative peak located at 700 m. The difference in the structure of AE and CE is referred to the upwelling and downwelling processes in the AEs and CEs respectively.</p><p>The study also provides an estimation of the depth-integrated heat and salt transport as well as zonal volume eddy-induced transport. Each AE (CE) generates volume transport of 1.98 Sv (1.87 Sv), heat transport of 2.9*1014 W (-8.3*104 W) and salt transport of 2.3*106 kg/s (-1.6*1013 kg/s).  Zonal eddy-induced transport has a general westward propagation direction reaching maximum of 0.6 Sv in the north-eastern part of the study area. The northward transport takes place predominantly in the southern and eastern parts of the study region and has significantly smaller magnitude. </p><p> </p><p><strong>This work was supported by Russian Science Foundation [project № 18-17-00027];</strong></p>


Geophysics ◽  
1993 ◽  
Vol 58 (8) ◽  
pp. 1148-1156 ◽  
Author(s):  
Scott MacKay ◽  
Ray Abma

Depth‐focusing analysis (DFA), a method of refining velocities for prestack depth migration, relies on amplitude buildups at zero offset to determine the extrapolation depths that best focus the migrated data. Unfortunately, seismic energy from dipping interfaces, diffractions, and noise often produce spurious amplitude indications of focusing. To reduce possible ambiguity in the DFA interpretation process, we introduce a new attribute for determining focusing that is relatively independent of amplitude. Our approach is based on estimates of the radius of wavefront curvature. The estimates are derived from normal moveout analysis of nonzero‐offset data saved during migration. By relating steeper moveout to smaller radius of wavefront curvature, focusing is defined by a wavefront curvature of zero radius. Additionally, we show that applying inverse‐radius weights to the amplitude data attenuates nonfocused events due to their large radius of curvature. Using the Marmousi data set, our weighting scheme resulted in reduced spurious focusing and enhanced velocity resolution in DFA.


Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 392-398 ◽  
Author(s):  
W.-J. Wu ◽  
L. Lines ◽  
A. Burton ◽  
H.-X. Lu ◽  
J. Zhu ◽  
...  

We produce depth images for an Alberta Foothills line by iteratively using a number of migration and velocity analysis techniques. In imaging steeply dipping layers of a foothills data set, it is apparent that thrust belt geology can violate the conventional assumptions of elevation datum corrections and common midpoint (CMP) stacking. To circumvent these problems, we use migration from topography in which we perform prestack depth migration on the data using correct source and receiver elevations. Migration from topography produces enhanced images of steep shallow reflectors when compared to conventional processing. In addition to migration from topography, we couple prestack depth migration with the continuous adjustment of velocity depth models. A number of criteria are used in doing this. These criteria require that our velocity estimates produce a focused image and that migrated depths in common image gathers be independent of source‐receiver offset. Velocity models are estimated by a series of iterative and interpretive steps involving prestack migration velocity analysis and structural interpretation. Overlays of velocity models on depth migrations should generally show consistency between velocity boundaries and reflection depths. Our preferred seismic depth section has been produced by using prestack reverse‐time depth migration coupled with careful geological interpretation.


Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1193-1201 ◽  
Author(s):  
Xiang‐Yang Li

An algorithm is proposed for determining the fracture orientation based on the azimuthal variations in the P-wave reflection moveout for a target interval. The differential moveout between orthogonal survey lines from the bottom of a given target shows cos 2ϕ variations with the line azimuth ϕ measured from the fracture strike for a fixed offset. A configuration of four intersecting survey lines may be used to quantify the fracture strike. The four lines form two orthogonal pairs, and the fracture strike can be obtained by analyzing the crossplot of the two corresponding pairs of the differential moveouts. An offset‐depth ratio (x/z) of 1.0 or greater (up to 1.5) is often required to quantify the moveout difference reliably. The sensitivity of the method is further enhanced by low/high impedance contrast at the top target interface but is greatly reduced by high/low impedance contrast. The method may be particularly useful in marine exploration with repeated surveys of various vintages where continuous azimuthal coverage is often not available. A data set from the North Sea is used to illustrate the technique.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. S167-S175 ◽  
Author(s):  
Jianfeng Zhang ◽  
Linong Liu

We present an efficient scheme for depth extrapolation of wide-angle 3D wavefields in laterally heterogeneous media. The scheme improves the so-called optimum split-step Fourier method by introducing a frequency-independent cascaded operator with spatially varying coefficients. The developments improve the approximation of the optimum split-step Fourier cascaded operator to the exact phase-shift operator of a varying velocity in the presence of strong lateral velocity variations, and they naturally lead to frequency-dependent varying-step depth extrapolations that reduce computational cost significantly. The resulting scheme can be implemented alternatively in spatial and wavenumber domains using fast Fourier transforms (FFTs). The accuracy of the first-order approximate algorithm is similar to that of the second-order optimum split-step Fourier method in modeling wide-angle propagation through strong, laterally varying media. Similar to the optimum split-step Fourier method, the scheme is superior to methods such as the generalized screen and Fourier finite difference. We demonstrate the scheme’s accuracy by comparing it with 3D two-way finite-difference modeling. Comparisons with the 3D prestack Kirchhoff depth migration of a real 3D data set demonstrate the practical application of the proposed method.


Geophysics ◽  
2004 ◽  
Vol 69 (1) ◽  
pp. 265-274 ◽  
Author(s):  
Eric Duveneck

Kinematic information for constructing velocity models can be extracted in a robust way from seismic prestack data with the common‐reflection‐surface (CRS) stack. This data‐driven process results, in addition to a simulated zero‐offset section, in a number of wavefront attributes—wavefront curvatures and normal ray emergence angles—associated with each simulated zero‐offset sample. A tomographic inversion method is presented that uses this kinematic information to determine smooth, laterally heterogeneous, isotropic subsurface velocity models for depth imaging. The input for the inversion consists of wavefront attributes picked at a number of locations in the simulated zero‐offset section. The smooth velocity model is described by B‐splines. An optimum model is found iteratively by minimizing the misfit between the picked data and the corresponding modeled values. The required forward‐modeled quantities are obtained during each iteration by dynamic ray tracing along normal rays pertaining to the input data points. Fréchet derivatives for the tomographic matrix are calculated by ray perturbation theory. The inversion procedure is demonstrated on a 2D synthetic prestack data set.


Geophysics ◽  
1995 ◽  
Vol 60 (4) ◽  
pp. 978-997 ◽  
Author(s):  
Jacob B. U. Haldorsen ◽  
Douglas E. Miller ◽  
John J. Walsh

We describe a method for extracting and deconvolving a signal generated by a drill bit and collected by an array of surface geophones. The drill‐noise signature is reduced to an effective impulse by means of a multichannel Wiener deconvolution technique, producing a walk‐away reverse vertical seismic profile (VSP) sampled almost continuously in depth. We show how the multichannel technique accounts for noise and for internal drill‐string reflections, automatically limiting the deconvolved data to frequencies containing significant energy. We have acquired and processed a data set from a well in Germany while drilling at a depth of almost 4000 m. The subsurface image derived from these data compares well with corresponding images from a 3-D surface seismic survey, a zero‐offset VSP survey, and a walk‐away VSP survey acquired using conventional wireline techniques. The effective bandwidth of the deconvolved drill‐noise data is comparable to the bandwidth of surface seismic data but significantly smaller than what can be achieved with wireline VSP techniques. Although the processing algorithm does not require the use of sensors mounted on the drill string, these sensors provide a very economic way to compress the data. The sensors on the drill string were also used for accurate timing of the deconvolved drill‐noise data.


Science ◽  
2013 ◽  
Vol 341 (6148) ◽  
pp. 871-875 ◽  
Author(s):  
Hejun Zhu ◽  
Jeroen Tromp

We constructed a three-dimensional azimuthally anisotropic model of Europe and the North Atlantic Ocean based on adjoint seismic tomography. Several features are well correlated with historical tectonic events in this region, such as extension along the North Atlantic Ridge, trench retreat in the Mediterranean, and counterclockwise rotation of the Anatolian Plate. Beneath northeastern Europe, the direction of the fast anisotropic axis follows trends of ancient rift systems older than 350 million years, suggesting “frozen-in” anisotropy related to the formation of the craton. Local anisotropic strength profiles identify the brittle-ductile transitions in lithospheric strength. In continental regions, these profiles also identify the lower crust, characterized by ductile flow. The observed anisotropic fabric is generally consistent with the current surface strain rate measured by geodetic surveys.


Sign in / Sign up

Export Citation Format

Share Document