Sensitivity analysis of multicomponent seismic attributes to fluid content and pore pressure

2008 ◽  
Author(s):  
Alireza Shahin ◽  
Paul L. Stoffa ◽  
Robert H. Tatham ◽  
Diana Sava
Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. O45-O58 ◽  
Author(s):  
Alireza Shahin ◽  
Robert Tatham ◽  
Paul Stoffa ◽  
Kyle Spikes

Separation of fluid pore pressure and saturation using inverted time-lapse seismic attributes is a mandatory task for field development. Multiple pairs of inversion-derived attributes can be used in a crossplot domain. We performed a sensitivity analysis to determine an optimal crossplot, and the validity of the separation is tested with a comprehensive petroelastic reservoir model. We simulated a poorly consolidated shaly sandstone reservoir based on a prograding near-shore depositional environment. A model of effective porosity is first simulated by Gaussian geostatistics. Well-known theoretical and experimental petrophysical correlations were then efficiently combined to consistently simulate reservoir properties. Next, the reservoir model was subjected to numerical simulation of multiphase fluid flow to predict the spatial distributions of fluid saturation and pressure. A geologically consistent rock physics model was then used to simulate the inverted seismic attributes. Finally, we conducted a sensitivity analysis of seismic attributes and their crossplots as a tool to discriminate the effect of pressure and saturation. The sensitivity analysis demonstrates that crossplotting of acoustic impedance versus shear impedance should be the most stable way to separate saturation and pressure changes compared to other crossplots (e.g., velocity ratio versus acoustic impedance). We also demonstrated that the saturation and pressure patterns were detected in most of the time-lapse scenarios; however, the saturation pattern is more likely detectable because the percentage in pressure change is often lower than that of the saturation change. Imperfections in saturation and pressure patterns exist in various forms, and they can be explained by the interaction of saturation and pressure, the diffusive nature of pressure, and rapid change in pressure due to production operations.


2021 ◽  
Vol 3 ◽  
Author(s):  
Yashvardhan Verma ◽  
Vikram Vishal ◽  
P. G. Ranjith

In order to tackle the exponential rise in global CO2 emissions, the Intergovernmental Panel on Climate Change (IPCC) proposed a carbon budget of 2,900 Gt to limit the rise in global temperature levels to 2°C above the pre-industrial level. Apart from curbing our emissions, carbon sequestration can play a significant role in meeting these ambitious goals. More than 500 Gt of CO2 will need to be stored underground by the end of this century to make a meaningful impact. Global capacity for CO2 storage far exceeds this requirement, the majority of which resides in unexplored deep aquifers. To identify potential storage sites and quantify their storage capacities, prospective aquifers or reservoirs need to be screened based on properties that affect the retention of CO2 in porous rocks. Apart from the total volume of a reservoir, the storage potential is largely constrained by an increase in pore pressure during the early years of injection and by migration of the CO2 plume in the long term. The reservoir properties affect both the pressure buildup and the plume front below the caprock. However, not many studies have quantified these effects. The current analysis computes the effect of rock properties (porosity, permeability, permeability anisotropy, pore compressibility, and formation water salinity) and injection rate on both these parameters by simulating CO2 injection at the bottom of a 2D mesh grid with hydrostatic boundary conditions. The study found that the most significant property in the sensitivity analysis was permeability. Porosity too affected the CO2 plume migration substantially, with higher porosities considerably delaying horizontal and vertical migration. Injection rate impacted both the pressure rise and plume migration consistently. Thus, in screening potential storage sites, we can infer that permeability is the dominant criterion when the pore pressure is closer to the minimum principal stress in the rocks, due to which injection rate needs to be managed with greater caution. Porosity is more significant when the lateral extents of the reservoir limit the storage potential.


2021 ◽  
Vol 9 ◽  
Author(s):  
Micol Todesco

Ground deformation at Campi Flegrei has fuelled a long-term scientific debate about its driving mechanism and its significance in hazard assessment. In an active volcanic system hosting a wide hydrothermal circulation, both magmatic and hydrothermal fluids could be responsible, to variable degrees, for the observed ground displacement. Fast and large uplifts are commonly interpreted in terms of pressure or volume changes associated with magma intrusion, while minor, slower displacement can be related to shallower sources. This work focuses on the deformation history of the last 35 years and shows that ground deformation measured at Campi Flegrei since 1985 is consistent with a poroelastic response of a shallow hydrothermal system to changes in pore pressure and fluid content. The extensive literature available for Campi Flegrei allows constraining system geometry, properties, and conditions. Changes in pore pressure and fluid content necessary to cause the observed deformation can then be calculated based on the linear theory of poroelasticity. The predicted pore pressure evolution and fluid fluxes are plausible and consistent with available measurements and independent estimates.


2021 ◽  
Author(s):  
H. C. Yoon ◽  
J. Kim

Abstract We study new constitutive relations employing the fundamental theory of elastoplasticity for two coupled irreversible processes: elastoplastic geomechanics and two-phase flow with capillary hysteresis. The fluid content is additively decomposed into elastic and plastic parts with infinitesimal transformation assumed. Specifically, the plastic fluid content, i.e., the total residual (or irrecoverable) saturation, is also additively decomposed into constituents due to the two irreversible processes: the geomechanical plasticity and the capillary hysteresis. The additive decomposition of the plastic fluid content facilitates combining the existing two individual simulators easily, for example, by using the fixed-stress sequential method. For pore pressure of the fluid in multi-phase which is coupled with the geomechanics, the equivalent pore pressure is employed, which yields the well-posedness of coupled multi-phase flow and geomechanics, regardless of the capillarity. We perform an energy analysis to show the well-posedness of the proposed model. And numerical examples demonstrate stable solutions for cyclic imbibition/drainage and loading/unloading processes. Employing the van Genuchten and the Drucker Prager models for capillary and the plasticity, respectively, we show the robustness of the model for capillary hysteresis in multiphase flow and elastoplastic geomechanics.


2021 ◽  
Author(s):  
Leonardo Sandoval ◽  
Monica Riva ◽  
Ivo Colombo ◽  
Alberto Guadagnini

<p>Methane is recognized as a potential energy source in the transition to carbon free energies. Appropriate modeling approaches to quantify methane migration in low permeability geomaterials can assist the appraisal of the feasibility of a methane recovery project. Wu et al. (2016) proposed a model enabling one to estimate the total mass flow rate of the gas as the sum of key processes, including (i) a surface diffusion and two weighted bulk diffusion components, (ii) slip flow, and (iii) Knudsen diffusion. In its isothermal form and taking pressure gradient as boundary condition, the model relies on 10 parameters. These are typically estimated through laboratory-scale experiments. Considering the mechanisms involved, such experiments are costly, time demanding, and their results are prone to uncertainty. The latter is also related to the intrinsic difficulties linked to replicating operational field conditions at the laboratory scale as well as to the desired transferability of results to heterogeneous field scale settings. Due to our still incomplete knowledge of the key mechanisms driving gas movement in low permeability geomaterials and the complexities associated with the estimation of model parameters, model outputs should be carefully analyzed considering all possible sources of uncertainty. In this sense, sensitivity analysis approaches may be used to enhance the quality of parameter estimation workflows, upon focusing efforts on parameters with the highest influence to target model outputs. We rely on two typical global sensitivity analysis approaches (i.e., Variance-based Sobol approach and Morris method) to analyze the behavior of the aforementioned gas migration model targeting low permeability media. Because of the complexity of the physical processes represented in the model and the typical frequency distributions of pore size in caprocks, the sensitivity analysis is performed in two differing settings, each corresponding to a given range of variability of characteristic pore sizes. When considering porous systems with pore size ranging between 2 and 100 nanometers, results based on Sobol indices identify (in decreasing order of importance) pore radius, porosity, pore pressure, and tortuosity as the parameters whose uncertainty significantly imprints model output uncertainty. Similar results are obtained through the analysis of the Morris indices, these identifying the pore radius parameter as the one with the highest contribution to non-linear (or interaction) effects on the model output. For tighter porous media (i.e., with pore size comprised between 2 and 10 nanometers), the Sobol indices analyses identify (in decreasing order of importance) pore pressure, porosity, blockage/migration ratio of adsorbed molecules, and pore radius as the most influential model parameters. The role of the blockage/migration ratio of adsorbed molecules suggests that surface diffusion is a dominant gas transport mechanism in these scenarios. The Morris approach identifies the same parameters as important, albeit in a different order of importance.</p><p>References.</p><p>Wu, K., Chen, Z., Li, X., Guo, C., Wei, M., 2016. A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect-adsorption-mechanic coupling. International Journal of Heat and Mass Transfer 93, 408-426. doi: 10.1016/j.ijheatmasstransfer.2015.10.003</p>


2020 ◽  
Vol 4 (1) ◽  
pp. 1-6
Author(s):  
Tanko A

Machine Learning techniques and applications have lately gained a lot of interest in many areas, including spheres of arithmetic, finances, engineering, dialectology, and a lot more. This is owing to the upwelling of ground-breaking and sophisticated machine learning procedures to exceedingly multifaceted complications along with the prevailing advances in high speed computing. Numerous usages of Machine learning in daily life include pattern recognition, automation, data processing and analysis, and so on. The Petroleum industry is not lagging behind also. On the contrary, machine learning approaches have lately been applied to enhance production, forecast recoverable hydrocarbons, augment well placement by means of pattern recognition, optimize hydraulic fracture design, and to help in reservoir characterization. In this paper, three different machine learning models were trained and utilized to explore the feasibility of forecasting pore pressure of a well. The machine learning algorithms include, Simple Linear Regression, Decision Stump and Multilayer Perceptron (ANN). The predictive accuracies of the algorithm was analyzed using statistical measures. Five (5) parameters were utilized as input variables in the models: hydrostatic pressure, overburden pressure, observed and normal sonic velocities and pore pressure. 80% of the data was used in training while the remaining 20% was used for testing of the models. A sensitivity analysis of the five variable was conducted so as to identify correlations of the variables. Results of the sensitivity analysis revealed that both hydrostatic and overburden pressures appear to have the strongest correlation with pore pressure (0.766) and closely followed by normal compacted sonic velocity (0.753). Meanwhile, observed sonic velocity has the least correlation (0.046). The models were appraised by determining their Relative Absolute Errors. Results indicate that Multilayer Perceptron has the best prediction and least Relative Absolute Error of 5.77%. While the Decision Stump model had a Relative absolute error of 54.41%. The Simple Linear Regression had a relative absolute error of 67.93%. By and large, all three models appear to be suitable for modeling pore pressure but the Multilayer Perceptron is the most accurate.


Sign in / Sign up

Export Citation Format

Share Document