scholarly journals Scanning anisotropy parameters in complex media

Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. U13-U22 ◽  
Author(s):  
Tariq Alkhalifah

Parameter estimation in an inhomogeneous anisotropic medium offers many challenges; chief among them is the trade-off between inhomogeneity and anisotropy. It is especially hard to estimate the anisotropy anellipticity parameter η in complex media. Using perturbation theory and Taylor’s series, I have expanded the solutions of the anisotropic eikonal equation for transversely isotropic (TI) media with a vertical symmetry axis (VTI) in terms of the independent parameter η from a generally inhomogeneous elliptically anisotropic medium background. This new VTI traveltime solution is based on a set of precomputed perturbations extracted from solving linear partial differential equations. The traveltimes obtained from these equations serve as the coefficients of a Taylor-type expansion of the total traveltime in terms of η. Shanks transform is used to predict the transient behavior of the expansion and improve its accuracy using fewer terms. A homogeneous medium simplification of the expansion provides classical nonhyperbolic moveout descriptions of the traveltime that are more accurate than other recently derived approximations. In addition, this formulation provides a tool to scan for anisotropic parameters in a generally inhomogeneous medium background. A Marmousi test demonstrates the accuracy of this approximation. For a tilted axis of symmetry, the equations are still applicable with a slightly more complicated framework because the vertical velocity and δ are not readily available from the data.

Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. WA31-WA42 ◽  
Author(s):  
Tariq Alkhalifah

A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor’s series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter [Formula: see text], the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter [Formula: see text] in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in [Formula: see text] and [Formula: see text] with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor’s series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. C37-C42 ◽  
Author(s):  
Alexey Stovas ◽  
Tariq Alkhalifah

In a transversely isotropic (TI) medium, the trade-off between inhomogeneity and anisotropy can dramatically reduce our capability to estimate anisotropy parameters. By expanding the TI eikonal equation in power series in terms of the aneliptic parameter [Formula: see text], we derive an efficient tool to estimate (scan) for [Formula: see text] in a generally inhomogeneous, elliptically anisotropic background medium. For a homogeneous-tilted transversely isotropic medium, we obtain an analytic nonhyperbolic moveout equation that is accurate for large offsets. In the common case where we do not have well information and it is necessary to resolve the vertical velocity, the background medium can be assumed isotropic, and the traveltime equations becomes simpler. In all cases, the accuracy of this new TI traveltime equation exceeds previously published formulations and demonstrates how [Formula: see text] is better resolved at small offsets when the tilt is large.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. C175-C185 ◽  
Author(s):  
Ivan Pšenčík ◽  
Véronique Farra

We have developed approximate nonhyperbolic P-wave moveout formulas applicable to weakly or moderately anisotropic media of arbitrary anisotropy symmetry and orientation. Instead of the commonly used Taylor expansion of the square of the reflection traveltime in terms of the square of the offset, we expand the square of the reflection traveltime in terms of weak-anisotropy (WA) parameters. No acoustic approximation is used. We specify the formulas designed for anisotropy of arbitrary symmetry for the transversely isotropic (TI) media with the axis of symmetry oriented arbitrarily in the 3D space. Resulting formulas depend on three P-wave WA parameters specifying the TI symmetry and two angles specifying the orientation of the axis of symmetry. Tests of the accuracy of the more accurate of the approximate formulas indicate that maximum relative errors do not exceed 0.3% or 2.5% for weak or moderate P-wave anisotropy, respectively.


Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. C19-C26 ◽  
Author(s):  
Alexey Stovas ◽  
Tariq Alkhalifah

Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.


1990 ◽  
Vol 57 (2) ◽  
pp. 398-403 ◽  
Author(s):  
M. Bouden ◽  
S. K. Datta

Guided waves in coated anisotropic medium are of interest in electronics. Also, in recent years, cladded fiber-reinforced composites are being developed for use as aerospace structures. This paper deals with guided wave propagation in a cladded or coated anisotropic medium. The cladding (coating) is assumed to be a thin isotropic layer, which is bonded to a transversely isotropic substrate with the axis of symmetry parallel to the layer. It is shown that the anisotropy of the substrate affects the dispersion behavior in a manner that is substantially different than in the case of isotropic substrate.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. C69-C79 ◽  
Author(s):  
Jyoti Behura ◽  
Ilya Tsvankin

Field records for small source-receiver offsets often contain intensive converted PS-waves that may be caused by the influence of anisotropy on either side of the reflector. Here, we study the small-angle reflection coefficients of the split converted [Formula: see text]- and [Formula: see text]-waves ([Formula: see text] and [Formula: see text]) for a horizontal interface separating two transversely isotropic (TI) media with arbitrary orientations of the symmetry axis. The normal-incidence reflection coefficients [Formula: see text] and [Formula: see text] vanish when both half-spaces have a horizontal symmetry plane, which happens if the symmetry axis is vertical or horizontal (i.e., if the medium is VTI or HTI). For a tilted symmetry axis in either medium, however, the magnitude of the reflection coefficients can reach substantial values that exceed 0.1, even if the anisotropy strength is moderate. To study the influence exerted by the orientation of the symmetry axis and the anisotropy parameters, we develop concise weak-contrast, weak-anisotropyapproximations for the PS-wave reflection coefficients and com-pare them with exact numerical results. In particular, the analytic solutions show that the contributions made by the Thomsen parameters [Formula: see text] and [Formula: see text] and the symmetry-axis tilt [Formula: see text] to the coefficients [Formula: see text] and [Formula: see text] can be expressed through the first derivative of the P-wave phase velocity at normal incidence. If the symmetry-axis orientation and anisotropy parameters do not change across the interface, the normal-incidence reflection coefficients are insignificant, regardless of the strength of the velocity and density contrast. The AVO (amplitude variation with offset) gradients of the PS-waves are influenced primarily by the anisotropy of the incidence medium that causes shear-wave splitting and determines the partitioning of energy between the [Formula: see text] and [Formula: see text] modes. Because of their substantial amplitude, small-angle PS reflections in TI media contain valuable information for anisotropic AVO inversion of multicomponent data. Our analytic solutions provide a foundation for linear AVO-inversion algorithms and can be used to guide nonlinear inversion that is based on the exact reflection coefficients.


Geophysics ◽  
1995 ◽  
Vol 60 (4) ◽  
pp. 1243-1248 ◽  
Author(s):  
John Brittan ◽  
Mike Warner ◽  
Gerhard Pratt

In elastic earth models, at a wide variety of scales, the subsurface is a layered sequence of different constituent media. It is therefore important to understand the elastic properties of such a sequence, in particular to determine the response of the layering to an investigating seismic wave. It can be shown that if the individual layer thicknesses are much less than the wavelength of a seismic wave passing through the stack, the wave will propagate as though it were traversing a homogenous, anisotropic medium (Postma, 1955). This property has been subjected to rigorous testing both experimentally (Melia and Carlson, 1984) and numerically (Carcione et al., 1991). The elastic properties of this “equivalent medium” can be derived algebraically from the elastic properties of the materials that compose the layers (Backus, 1962). The homogenous equivalent medium will be transversely isotropic (hereafter referred to as TI), the axis of symmetry lying perpendicular to the layering.


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. A53-A57 ◽  
Author(s):  
Samik Sil ◽  
Mrinal K. Sen

Seismic critical-angle reflectometry is a relatively new field for estimating seismic anisotropy parameters. The theory relates changes in the critical angle with azimuth of the seismic line to the principal axis and anisotropy parameters. Current implementation of the critical-angle reflectometry process has certain shortcomings in that the critical angle is determined from critical offset and the process is vulnerable to different approximation errors. Seismic critical-angle analysis in the plane-wave [Formula: see text] domain can handle these issues and has the potential to become an independent tool for estimating anisotropy parameters. The theory of seismic critical-angle reflectometry is modified to make it suitable for [Formula: see text] domain analysis. Then using full-wave synthetic seismograms at three different azimuths for a transversely isotropic medium with a horizontal axis of symmetry (HTI), the effectiveness of anisotropy parameter estimation is demonstrated.


Geophysics ◽  
2006 ◽  
Vol 71 (2) ◽  
pp. T17-T30 ◽  
Author(s):  
Yaping Zhu ◽  
Ilya Tsvankin

Directionally dependent attenuation in transversely isotropic (TI) media can influence significantly the body-wave amplitudes and distort the results of the AVO (amplitude variation with offset) analysis. Here, we develop a consistent analytic treatment of plane-wave properties for TI media with attenuation anisotropy. We use the concept of homogeneous wave propagation, assuming that in weakly attenuative media the real and imaginary parts of the wave vector are parallel to one another. The anisotropic quality factor can be described by matrix elements [Formula: see text], defined as the ratios of the real and imaginary parts of the corresponding stiffness coefficients. To characterize TI attenuation, we follow the idea of the Thomsen notation for velocity anisotropy and replace the components [Formula: see text] by two reference isotropic quantities and three dimensionless anisotropy parameters [Formula: see text], and [Formula: see text]. The parameters [Formula: see text] and [Formula: see text] quantify the difference between the horizontal- and vertical-attenuation coefficients of P- and SH-waves, respectively, while [Formula: see text] is defined through the second derivative of the P-wave attenuation coefficient in the symmetry direction. Although the definitions of [Formula: see text], and [Formula: see text] are similar to those for the corresponding Thomsen parameters, the expression for [Formula: see text] reflects the coupling between the attenuation and velocity anisotropy. Assuming weak attenuation as well as weak velocity and attenuation anisotropy allows us to obtain simple attenuation coefficients linearized in the Thomsen-style parameters. The normalized attenuation coefficients for P- and SV-waves have the same form as the corresponding approximate phase-velocity functions, but both [Formula: see text] and the effective SV-wave attenuation-anisotropy parameter [Formula: see text] depend on the velocity-anisotropy parameters in addition to the elements [Formula: see text]. The linearized approximations not only provide valuable analytic insight, but they also remain accurate for the practically important range of small and moderate anisotropy parameters — in particular, for near-vertical and near-horizontal propagation directions.


Sign in / Sign up

Export Citation Format

Share Document