Small-angle AVO response of PS-waves in tilted transversely isotropic media

Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. C69-C79 ◽  
Author(s):  
Jyoti Behura ◽  
Ilya Tsvankin

Field records for small source-receiver offsets often contain intensive converted PS-waves that may be caused by the influence of anisotropy on either side of the reflector. Here, we study the small-angle reflection coefficients of the split converted [Formula: see text]- and [Formula: see text]-waves ([Formula: see text] and [Formula: see text]) for a horizontal interface separating two transversely isotropic (TI) media with arbitrary orientations of the symmetry axis. The normal-incidence reflection coefficients [Formula: see text] and [Formula: see text] vanish when both half-spaces have a horizontal symmetry plane, which happens if the symmetry axis is vertical or horizontal (i.e., if the medium is VTI or HTI). For a tilted symmetry axis in either medium, however, the magnitude of the reflection coefficients can reach substantial values that exceed 0.1, even if the anisotropy strength is moderate. To study the influence exerted by the orientation of the symmetry axis and the anisotropy parameters, we develop concise weak-contrast, weak-anisotropyapproximations for the PS-wave reflection coefficients and com-pare them with exact numerical results. In particular, the analytic solutions show that the contributions made by the Thomsen parameters [Formula: see text] and [Formula: see text] and the symmetry-axis tilt [Formula: see text] to the coefficients [Formula: see text] and [Formula: see text] can be expressed through the first derivative of the P-wave phase velocity at normal incidence. If the symmetry-axis orientation and anisotropy parameters do not change across the interface, the normal-incidence reflection coefficients are insignificant, regardless of the strength of the velocity and density contrast. The AVO (amplitude variation with offset) gradients of the PS-waves are influenced primarily by the anisotropy of the incidence medium that causes shear-wave splitting and determines the partitioning of energy between the [Formula: see text] and [Formula: see text] modes. Because of their substantial amplitude, small-angle PS reflections in TI media contain valuable information for anisotropic AVO inversion of multicomponent data. Our analytic solutions provide a foundation for linear AVO-inversion algorithms and can be used to guide nonlinear inversion that is based on the exact reflection coefficients.

Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. N11-N20 ◽  
Author(s):  
Lyubov Skopintseva ◽  
Tariq Alkhalifah

Azimuthal variations of wavefield characteristics, such as traveltime or reflection amplitude, play an important role in the identification of fractured media. A transversely isotropic medium with a horizontal symmetry axis (HTI medium) is the simplest azimuthally anisotropic model typically used to describe one set of vertical fractures. There exist many techniques in industry to recover anisotropic parameters based on moveout equations and linearized reflection coefficients using such a model. However, most of the methods have limitations in defining properties of the fractures due to linearizations and physical approximations used in their development. Thus, azimuthal analysis of traveltimes based on normal moveout ellipses recovers a maximum of three medium parameters instead of the required five. Linearizations made in plane-wave reflection coefficients (PWRCs) limit the amplitude-versus-offset (AVO) analysis to small incident angles and weak-contrast interfaces. Inversion based on azimuthal AVO for small offsets encounters nonuniqueness in the resolving power of the anisotropy parameters. Extending the AVO analysis and inversion to and beyond the critical reflection angle increases the amount of information recovered from the medium. However, well-accepted PWRCs are not valid in the vicinity of the critical angle and beyond it, due to frequency and spherical wave effects. Recently derived spherical and effective reflection coefficient (ERC) methods overcome this problem. We extended the ERCs approach to HTI media to analyze the potential of near- and postcritical reflections in azimuthal AVO analysis. From the sensitivity analysis, we found that ERCs are sensitive to different sets of parameters prior to and beyond the critical angle, which is useful in enhancing our resolution of the anisotropy parameters. Additionally, the resolution of the parameters depends on a sufficient azimuthal coverage in the acquisition setup. The most stable AVO results for the azimuthal acquisition setup with minimum number of lines (three) are achieved when the azimuthal angle between lines is greater than 45°.


2012 ◽  
Vol 190 (2) ◽  
pp. 1197-1203 ◽  
Author(s):  
Dariush Nadri ◽  
Joël Sarout ◽  
Andrej Bóna ◽  
David Dewhurst

Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. C37-C42 ◽  
Author(s):  
Alexey Stovas ◽  
Tariq Alkhalifah

In a transversely isotropic (TI) medium, the trade-off between inhomogeneity and anisotropy can dramatically reduce our capability to estimate anisotropy parameters. By expanding the TI eikonal equation in power series in terms of the aneliptic parameter [Formula: see text], we derive an efficient tool to estimate (scan) for [Formula: see text] in a generally inhomogeneous, elliptically anisotropic background medium. For a homogeneous-tilted transversely isotropic medium, we obtain an analytic nonhyperbolic moveout equation that is accurate for large offsets. In the common case where we do not have well information and it is necessary to resolve the vertical velocity, the background medium can be assumed isotropic, and the traveltime equations becomes simpler. In all cases, the accuracy of this new TI traveltime equation exceeds previously published formulations and demonstrates how [Formula: see text] is better resolved at small offsets when the tilt is large.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B15-B32 ◽  
Author(s):  
Shaun Hadden ◽  
R. Gerhard Pratt ◽  
Brendan Smithyman

Anisotropic waveform tomography (AWT) uses anisotropic traveltime tomography followed by anisotropic full-waveform inversion (FWI). Such an approach is required for FWI in cases in which the geology is likely to exhibit anisotropy. An important anisotropy class is that of transverse isotropy (TI), and the special case of TI media with a vertical symmetry axis (VTI) media is often used to represent elasticity in undeformed sedimentary layering. We have developed an approach for AWT that uses an acoustic approximation to simulate waves in VTI media, and we apply this approach to crosshole data. In our approach, the best-fitting models of seismic velocity and Thomsen VTI anisotropy parameters are initially obtained using anisotropic traveltime tomography, and they are then used as the starting models for VTI FWI within the acoustic approximation. One common problem with the acoustic approach to TI media is the generation of late-arriving (spurious) S-waves as a by-product of the equation system. We used a Laplace-Fourier approach that effectively damps the spurious S-waves to suppress artifacts that might otherwise corrupt the final inversion results. The results of applying AWT to synthetic data illustrate the trade-offs in resolution between the two parameter classes of velocity and anisotropy, and they also verify anisotropic traveltime tomography as a valid method for generating starting models for FWI. The synthetic study further indicates the importance of smoothing the anisotropy parameters before proceeding to FWI inversions of the velocity parameter. The AWT technique is applied to real crosshole field gathers from a sedimentary environment in Western Canada, and the results are compared with the results from a simpler (elliptical) anisotropy model. The transversely isotropic approach yields an FWI image of the vertical velocity that (1) exhibits a superior resolution and (2) better predicts the field data than does the elliptical approach.


Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1600-1610 ◽  
Author(s):  
Andres Pech ◽  
Ilya Tsvankin ◽  
Vladimir Grechka

Nonhyperbolic (long‐spread) moveout provides essential information for a number of seismic inversion/processing applications, particularly for parameter estimation in anisotropic media. Here, we present an analytic expression for the quartic moveout coefficient A4 that controls the magnitude of nonhyperbolic moveout of pure (nonconverted) modes. Our result takes into account reflection‐point dispersal on irregular interfaces and is valid for arbitrarily anisotropic, heterogeneous media. All quantities needed to compute A4 can be evaluated during the tracing of the zero‐offset ray, so long‐spread moveout can be modeled without time‐consuming multioffset, multiazimuth ray tracing. The general equation for the quartic coefficient is then used to study azimuthally varying nonhyperbolic moveout of P‐waves in a dipping transversely isotropic (TI) layer with an arbitrary tilt ν of the symmetry axis. Assuming that the symmetry axis is confined to the dip plane, we employed the weak‐anisotropy approximation to analyze the dependence of A4 on the anisotropic parameters. The linearized expression for A4 is proportional to the anellipticity coefficient η ≈ ε − δ and does not depend on the individual values of the Thomsen parameters. Typically, the magnitude of nonhyperbolic moveout in tilted TI media above a dipping reflector is highest near the reflector strike, whereas deviations from hyperbolic moveout on the dip line are substantial only for mild dips. The azimuthal variation of the quartic coefficient is governed by the tilt ν and reflector dip φ and has a much more complicated character than the NMO–velocity ellipse. For example, if the symmetry axis is vertical (VTI media, ν = 0) and the dip φ < 30°, A4 goes to zero on two lines with different azimuths where it changes sign. If the symmetry axis is orthogonal to the reflector (this model is typical for thrust‐and‐fold belts), the strike‐line quartic coefficient is defined by the well‐known expression for a horizontal VTI layer (i.e., it is independent of dip), while the dip‐line A4 is proportional to cos4 φ and rapidly decreases with dip. The high sensitivity of the quartic moveout coefficient to the parameter η and the tilt of the symmetry axis can be exploited in the inversion of wide‐azimuth, long‐spread P‐wave data for the parameters of TI media.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. U13-U22 ◽  
Author(s):  
Tariq Alkhalifah

Parameter estimation in an inhomogeneous anisotropic medium offers many challenges; chief among them is the trade-off between inhomogeneity and anisotropy. It is especially hard to estimate the anisotropy anellipticity parameter η in complex media. Using perturbation theory and Taylor’s series, I have expanded the solutions of the anisotropic eikonal equation for transversely isotropic (TI) media with a vertical symmetry axis (VTI) in terms of the independent parameter η from a generally inhomogeneous elliptically anisotropic medium background. This new VTI traveltime solution is based on a set of precomputed perturbations extracted from solving linear partial differential equations. The traveltimes obtained from these equations serve as the coefficients of a Taylor-type expansion of the total traveltime in terms of η. Shanks transform is used to predict the transient behavior of the expansion and improve its accuracy using fewer terms. A homogeneous medium simplification of the expansion provides classical nonhyperbolic moveout descriptions of the traveltime that are more accurate than other recently derived approximations. In addition, this formulation provides a tool to scan for anisotropic parameters in a generally inhomogeneous medium background. A Marmousi test demonstrates the accuracy of this approximation. For a tilted axis of symmetry, the equations are still applicable with a slightly more complicated framework because the vertical velocity and δ are not readily available from the data.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. WC51-WC63 ◽  
Author(s):  
Xiaoxiang Wang ◽  
Ilya Tsvankin

Transversely isotropic models with a tilted symmetry axis (TTI media) are widely used in depth imaging of complex geologic structures. Here, we present a modification of a previously developed 2D P-wave tomographic algorithm for estimating heterogeneous TTI velocity fields and apply it to synthetic and field data. The symmetry-direction velocity [Formula: see text], anisotropy parameters [Formula: see text] and [Formula: see text], and symmetry-axis tilt [Formula: see text] are defined on a rectangular grid. To ensure stable reconstruction of the TTI parameters, reflection data are combined with walkaway vertical seismic profiling (VSP) traveltimes in joint tomographic inversion. To improve the convergence of the algorithm, we develop a three-stage model-updating procedure that gradually relaxes the constraints on the spatial variations of the anisotropy parameters, while the symmetry axis is kept orthogonal to the reflectors. Only at the final stage of the inversion are the parameters [Formula: see text], [Formula: see text], and [Formula: see text] updated on the same grid. We also incorporate geologic constraints into tomography by designing regularization terms that penalize parameter variations in the direction parallel to the interfaces. First, we examine the performance of the regularized joint tomography of reflection and VSP data for two sections of the BP TTI model that contain an anticline and a salt dome. All three TTI parameters in the shallow part of both sections (down to 5 km) are well resolved by the proposed model-updating process. Then, the algorithm is applied to a 2D section from 3D ocean-bottom seismic data acquired at Volve field in the North Sea. The inverted TTI model produces well-focused reflectors throughout the section and accurately positions the key horizons, which is confirmed by the available well markers.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. WA31-WA42 ◽  
Author(s):  
Tariq Alkhalifah

A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor’s series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter [Formula: see text], the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter [Formula: see text] in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in [Formula: see text] and [Formula: see text] with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor’s series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis.


Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 592-598 ◽  
Author(s):  
Lúcio T. Santos ◽  
Martin Tygel

The normal‐incidence elastic compressional reflection coefficient admits an exact, simple expression in terms of the acoustic impedance, namely the product of the P‐wave velocity and density, at both sides of an interface. With slight modifications a similar expression can, also exactly, express the oblique‐incidence acoustic reflection coefficient. A severe limitation on the use of these two reflection coefficients in analyzing seismic reflection data is that they provide no information on shear‐wave velocities that refer to the interface. We address the natural question of whether a suitable impedance concept can be introduced for which arbitrary P–P reflection coefficients can be expressed in a form analogous to their acoustic counterparts. Although no closed‐form exact solution exists, our analysis provides a general framework for which, under suitable restrictions of the medium parameters, possible impedance functions can be derived. In particular, the well‐established concept of elastic impedance and the recently introduced concept of reflection impedance can be better understood. Concerning these two impedances, we examine their potential for modeling and for estimating the AVO indicators of intercept and gradient. For typical synthetic examples, we show that the reflection impedance formulation provides consistently better results than those obtained using the elastic impedance.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. WC41-WC50 ◽  
Author(s):  
Tariq Alkhalifah

Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with [Formula: see text] and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case [Formula: see text] or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.


Sign in / Sign up

Export Citation Format

Share Document