Focused inversion of vertical radar profile (VRP) traveltime data

Geophysics ◽  
2012 ◽  
Vol 77 (1) ◽  
pp. H9-H18 ◽  
Author(s):  
Giulio Vignoli ◽  
Rita Deiana ◽  
Giorgio Cassiani

The reconstruction of the GPR velocity vertical profile from vertical radar profile (VRP) traveltime data is a problem with a finite number of measurements and imprecise data, analogous to similar seismic techniques, such as the shallow down-hole test used for S-wave velocity profiling or the vertical seismic profiling (VSP) commonly used in deeper exploration. The uncertainty in data accuracy and the error amplification inherent in deriving velocity estimates from gradients of arrival times make this an example of an ill-posed inverse problem. In the framework of Tikhonov regularization theory, ill-posedness can be tackled by introducing a regularizing functional (stabilizer). The role of this functional is to stabilize the numerical solution by incorporating the appropriate a priori assumptions about the geometrical and/or physical properties of the solution. One of these assumptions could be the existence of sharp boundaries separating rocks with different physical properties. We apply a method based on the minimum support stabilizer to the VRP traveltime inverse problem. This stabilizer makes it possible to produce more accurate profiles of geological targets with compact structure. We compare more traditional inversion results with our proposed compact reconstructions. Using synthetic examples, we demonstrate that the minimum support stabilizer allows an improved recovery of the profile shape and velocity values of blocky targets. We also study the stabilizer behavior with respect to different noise levels and different choices of the reference model. The proposed approach is then applied to real cases where VPRs have been used to derive moisture content profiles as a function of depth. In these real cases, the derived sharper profiles are consistent with other evidence, such as GPR zero-offset profiles, GPR reflections and known locations of the water table.

Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. R49-R57 ◽  
Author(s):  
J. Germán Rubino ◽  
Danilo Velis

Prestack seismic data has been used in a new method to fully determine thin-bed properties, including the estimation of its thickness, P- and S-wave velocities, and density. The approach requires neither phase information nor normal-moveout (NMO) corrections, and assumes that the prestack seismic response of the thin layer can be isolated using an offset-dependent time window. We obtained the amplitude-versus-angle (AVA) response of the thin bed considering converted P-waves, S-waves, and all the associated multiples. We carried out the estimation of the thin-bed parameters in the frequency (amplitude spectrum) domain using simulated annealing. In contrast to using zero-offset data, the use of AVA data contributes to increase the robustness of this inverse problem under noisy conditions, as well as to significantly reduce its inherent nonuniqueness. To further reduce the nonuniqueness, and as a means to incorporate a priori geologic or geophysical information (e.g., well-log data), we imposed appropriate bounding constraints to the parameters of the media lying above and below the thin bed, which need not be known accurately. We tested the method by inverting noisy synthetic gathers corresponding to simple wedge models. In addition, we stochastically estimated the uncertainty of the solutions by inverting different data sets that share the same model parameters but are contaminated with different noise realizations. The results suggest that thin beds can be characterized fully with a moderate to high degree of confidence below tuning, even when using an approximate wavelet spectrum.


Author(s):  
Chris Sharp ◽  
Bryony DuPont

Currently, ocean wave energy is a novel means of electricity generation that is projected to potentially serve as a primary energy source in coastal areas. However, for wave energy converters (WECs) to be applicable on a scale that allows for grid implementation, these devices will need to be placed in close relative proximity to each other. From what’s been learned in the wind industry of the U.S., the placement of these devices will require optimization considering both cost and power. However, current research regarding optimized WEC layouts only considers the power produced. This work explores the development of a genetic algorithm (GA) that will create optimized WEC layouts where the objective function considers both the economics involved in the array’s development as well as the power generated. The WEC optimization algorithm enables the user to either constrain the number of WECs to be included in the array, or allow the algorithm to define this number. To calculate the objective function, potential arrays are evaluated using cost information from Sandia National Labs Reference Model Project, and power development is calculated such that WEC interaction affects are considered. Results are presented for multiple test scenarios and are compared to previous literature, and the implications of a priori system optimization for offshore renewables are discussed.


Author(s):  
Vu Tuan

AbstractWe prove that by taking suitable initial distributions only finitely many measurements on the boundary are required to recover uniquely the diffusion coefficient of a one dimensional fractional diffusion equation. If a lower bound on the diffusion coefficient is known a priori then even only two measurements are sufficient. The technique is based on possibility of extracting the full boundary spectral data from special lateral measurements.


1982 ◽  
Vol 72 (3) ◽  
pp. 779-792
Author(s):  
J. D. Achenbach ◽  
A. Norris ◽  
K. Viswanathan

abstract The inverse problem of diffraction of elastic waves by the edge of a large crack has been investigated on the basis of elastodynamic ray theory and the geometrical theory of diffraction. Two methods are discussed for the mapping of the edge of a crack-like flaw in an elastic medium. The methods require as input data the arrival times of diffracted ultrasonic signals. The first method maps flash points on the crack edge by a process of triangulation with the source and receiver as given vertices of the triangle. By the use of arrival times at neighboring positions of the source and/or the receiver, the directions of signal propagation, which determine the triangle, can be computed. This inverse mapping is global in the sense that no a priori knowledge of the location of the crack edge is necessary. The second method is a local edge mapping which determines planes relative to a known point close to the crack edge. Each plane contains a flash point. The envelope of the planes maps an approximation to the crack edge. The errors due to inaccuracies in the input data and in the computational procedure have been illustrated by specific examples.


2021 ◽  
pp. 36-47
Author(s):  
Sergey Mitsyn ◽  
Egor Bolshakov

Various methods based on growing bodies are lately gaining attention in a context of inverse gravity problem that we call a family of “assembly methods”. A variant of method was adopted for GIS INTEGRO in original formulation that is fit for the problem of multiple bodies incorporated in an environment of varying density, in absolute densities (not density contrasts) that are however have to be a priori specified. Such formulation allowed the implementation of the method that is suitable for territory modeling in the regional scale. To workaround method’s instability a number of changes are proposed that consist of introduction of priority on atomic modifications, modification queue and assessment of model evolution instead of just the final result. The developed software allows processing of large grids (tens of millions of tiling elements) even on 5–8 year old desktops. Based on method approbation experience some insights and practice methods are presented. An application example is presented as part of work on modeling of Enisei-Khatanga regional depression territory.


2017 ◽  
Vol 24 (3) ◽  
pp. 543-551 ◽  
Author(s):  
Vladimir Y. Zaitsev ◽  
Andrey V. Radostin ◽  
Elena Pasternak ◽  
Arcady Dyskin

Abstract. Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (∼ 80 %) of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks). Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (∼ 45 %) portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.


Geophysics ◽  
1987 ◽  
Vol 52 (9) ◽  
pp. 1211-1228 ◽  
Author(s):  
Peter Mora

The treatment of multioffset seismic data as an acoustic wave field is becoming increasingly disturbing to many geophysicists who see a multitude of wave phenomena, such as amplitude‐offset variations and shearwave events, which can only be explained by using the more correct elastic wave equation. Not only are such phenomena ignored by acoustic theory, but they are also treated as undesirable noise when they should be used to provide extra information, such as S‐wave velocity, about the subsurface. The problems of using the conventional acoustic wave equation approach can be eliminated via an elastic approach. In this paper, equations have been derived to perform an inversion for P‐wave velocity, S‐wave velocity, and density as well as the P‐wave impedance, S‐wave impedance, and density. These are better resolved than the Lamé parameters. The inversion is based on nonlinear least squares and proceeds by iteratively updating the earth parameters until a good fit is achieved between the observed data and the modeled data corresponding to these earth parameters. The iterations are based on the preconditioned conjugate gradient algorithm. The fundamental requirement of such a least‐squares algorithm is the gradient direction which tells how to update the model parameters. The gradient direction can be derived directly from the wave equation and it may be computed by several wave propagations. Although in principle any scheme could be chosen to perform the wave propagations, the elastic finite‐ difference method is used because it directly simulates the elastic wave equation and can handle complex, and thus realistic, distributions of elastic parameters. This method of inversion is costly since it is similar to an iterative prestack shot‐profile migration. However, it has greater power than any migration since it solves for the P‐wave velocity, S‐wave velocity, and density and can handle very general situations including transmission problems. Three main weaknesses of this technique are that it requires fairly accurate a priori knowledge of the low‐ wavenumber velocity model, it assumes Gaussian model statistics, and it is very computer‐intensive. All these problems seem surmountable. The low‐wavenumber information can be obtained either by a prior tomographic step, by the conventional normal‐moveout method, by a priori knowledge and empirical relationships, or by adding an additional inversion step for low wavenumbers to each iteration. The Gaussian statistics can be altered by preconditioning the gradient direction, perhaps to make the solution blocky in appearance like well logs, or by using large model variances in the inversion to reduce the effect of the Gaussian model constraints. Moreover, with some improvements to the algorithm and more parallel computers, it is hoped the technique will soon become routinely feasible.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Rolando Grave de Peralta ◽  
Olaf Hauk ◽  
Sara L. Gonzalez

A tomography of neural sources could be constructed from EEG/MEG recordings once the neuroelectromagnetic inverse problem (NIP) is solved. Unfortunately the NIP lacks a unique solution and therefore additional constraints are needed to achieve uniqueness. Researchers are then confronted with the dilemma of choosing one solution on the basis of the advantages publicized by their authors. This study aims to help researchers to better guide their choices by clarifying what is hidden behind inverse solutions oversold by their apparently optimal properties to localize single sources. Here, we introduce an inverse solution (ANA) attaining perfect localization of single sources to illustrate how spurious sources emerge and destroy the reconstruction of simultaneously active sources. Although ANA is probably the simplest and robust alternative for data generated by a single dominant source plus noise, the main contribution of this manuscript is to show that zero localization error of single sources is a trivial and largely uninformative property unable to predict the performance of an inverse solution in presence of simultaneously active sources. We recommend as the most logical strategy for solving the NIP the incorporation of sound additional a priori information about neural generators that supplements the information contained in the data.


Author(s):  
John A. Adam

This chapter focuses on the underlying mathematics of seismic rays. Seismic waves caused by earthquakes and explosions are used in seismic tomography to create computer-generated, three-dimensional images of Earth's interior. If the Earth had a uniform composition and density, seismic rays would travel in straight lines. However, it is broadly layered, causing seismic rays to be refracted and reflected across boundaries. In order to calculate the speed along the wave's ray path, the time it takes for a seismic wave to arrive at a seismic station from an earthquake needs to be determined. Arrival times of different seismic waves allow scientists to define slower or faster regions deep in the Earth. The chapter first presents the relevant equations for seismic rays before discussing how rays are propagated in a spherical Earth. The Wiechert-Herglotz inverse problem is considered, along with the properties of X in a horizontally stratified Earth.


Geophysics ◽  
2021 ◽  
pp. 1-44
Author(s):  
Ujjal K. Borah ◽  
Prasanta K. Patro

Large man-made water-reservoirs promote fluid diffusion and cause critically stressed fault zones underneath to trigger earthquakes. Electrical resistivity is a crucial property to investigate such fluid-filled fault zones. We, therefore, carry out magnetotelluric (MT) investigation to explore an intra-plate earthquake zone, which is related to artificial reservoir triggered seismicity. However, due to surface access restrictions, our dataset has a gap in coverage in the middle part of the study area. This data gap region coincides with the earthquake hypocenter distribution in that intra-plate earthquake zone. Therefore, it is vital to fill the data gap to get the electrical signature of the active seismic zone. To compensate for the data gap, we develop a relation that connects resistivity with the ratio of seismic P- to S-wave velocity ( VP/ VS). Utilizing this relation, we estimate a priori resistivity distribution in the data gap region from known vp/vs values during inversion to compensate for the data gap. A comparison study of the root mean square (RMS) misfits of inversion outputs (with and without data gap filled) proves the effectiveness of the established relation. The inversion outputs obtained using the established relation brings out fault signatures in the data gap region. To examine the reliability and accuracy of these fault signatures, we occupy a portion of the data gap with new MT sites. We compare the inversion output from this new setup with the inversion output obtained from the established relation and observe that the electrical signatures in both outputs are spatially correlated. Further, a synthetic test on a similar earth model establishes the credibility and robustness of the derived relation.


Sign in / Sign up

Export Citation Format

Share Document