Diffraction imaging using shot and opening-angle gathers: A prestack time migration approach

Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. S23-S33 ◽  
Author(s):  
Jianfeng Zhang ◽  
Jiangjie Zhang

We have developed a migration scheme that can image weak diffractions in time. This significantly contributes to conventional interpretation in detecting small-scale faults and heterogeneities. The proposed scheme images diffractions using the shot and opening-angle gathers generated by prestack time migration (PSTM). Here, the shot and opening-angle gather represents a 2D migrated gather in terms of shot locations and opening angles between the incident- and scattered-rays. We muted the Fresnel zones related to reflections, corrected phases of diffractions, and enhanced diffractions in the migrated gathers. As a result, the proposed diffraction PSTM can image diffractions with and without phase-reversal. Moreover, the weak diffractions tangent to reflections can be clearly imaged. Diffraction PSTM can update migration velocities according to behaviors of reflection and diffraction events in the migrated gathers by scanning, thus overcoming a crucial problem in diffraction imaging. The reflector dips used in diffraction PSTM are obtained by picking the angles related to reflections in the shot and opening-angle gathers for a partial migration. Synthetic and field data tests demonstrate the validity of diffraction PSTM.

2019 ◽  
Vol 220 (3) ◽  
pp. 1569-1584
Author(s):  
Zhengwei Li ◽  
Jianfeng Zhang

SUMMARY Accurate identification of the locations and orientations of small-scale faults plays an important role in seismic interpretation. We have developed a 3-D migration scheme that can image small-scale faults using diffractions in time. This provides a resolution beyond the classical Rayleigh limit of half a wavelength in detecting faults. The scheme images weak diffractions by building a modified dip-angle gather, which is obtained by replacing the two dip angles dimensions of the conventional 2-D dip-angle gather with tangents of the dip angles. We build the modified 2-D dip-angle gathers by calculating the tangents of dip angles following 3-D prestack time migration (PSTM). In the resulting modified 2-D dip-angle gathers, the Fresnel zone related to the specular reflection exhibits an ellipse. Comparing with the conventional 2-D dip-angle gather, diffraction event related a fault exhibits a straight cylinder shape with phase-reversal across a line related the orientation of the fault. As a result, we can not only mute the Fresnel zones related to reflections, correct phase for edge diffractions and obtain the image of faults, but also detect the orientations of 3-D faults using the modified dip-angle gathers. Like the conventional dip-angle gathers, the modified dip-angle gathers can also be used to image diffractions resulting from other sources. 3-D Field data tests demonstrate the validity of the proposed diffraction imaging scheme.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. S555-S566 ◽  
Author(s):  
Zhengwei Li ◽  
Jianfeng Zhang

We have built a vertical traveltime difference (VTD) gather to image diffractions in the 3D time domain. This significantly improves detection of small-scale faults and heterogeneities in 3D seismic data. The VTD gather is obtained using 3D Kirchhoff prestack time migration based on the traveltime-related inline and crossline dip angles, which is closely related to the 2D dip-angle gather. In VTD gathers, diffraction events exhibit flattening, whereas reflection events have convex upward-sloping shapes. Different from the 2D dip-angle gather, Fresnel zone-related specular reflections are precisely focused on the given regions over all offsets and azimuths, thus leaving more diffraction energy after muting. To image linear diffractors, such as faults in three dimensions, the VTD gather can be extended into two dimensions by adding a dip-azimuth dimension. This makes it possible to correct phases of edge diffractions and detect the orientations of the linear diffractors. The memory requirement of the VTD or VTD plus azimuth gathers is much less than that of the 2D dip-angle gathers. We can store the gathers at each lateral position and then correct the phase and enhance the weak diffractions in 3D cases. Synthetic and field data tests demonstrate the effectiveness of our 3D diffraction imaging method.


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. U25-U35 ◽  
Author(s):  
Luke Decker ◽  
Dmitrii Merzlikin ◽  
Sergey Fomel

We perform seismic diffraction imaging and time-migration velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image the slope components using migration velocity extrapolation in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented in a highly parallel manner in the Fourier domain. Synthetic and field data experiments show that the proposed algorithms are able to detect accurate time-migration velocities by measuring the flatness of diffraction events in slope gathers for single- and multiple-offset data.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. H1-H12 ◽  
Author(s):  
Hemin Yuan ◽  
Mahboubeh Montazeri ◽  
Majken C. Looms ◽  
Lars Nielsen

Diffractions caused by, e.g., faults, fractures, and small-scale heterogeneity localized near the surface are often used in ground-penetrating radar (GPR) reflection studies to constrain the subsurface velocity distribution using simple hyperbola fitting. Interference with reflected energy makes the identification of diffractions difficult. We have tailored and applied a diffraction imaging method to improve imaging for surface reflection GPR data. Based on a plane-wave destruction algorithm, the method can separate reflections from diffractions. Thereby, a better identification of diffractions facilitates an improved determination of GPR wave velocities and an optimized migration result. We determined the potential of this approach using synthetic and field data, and, for the field study, we also compare the estimated velocity structure with crosshole GPR results. For the field data example, we find that the velocity structure estimated using the diffraction-based process correlates well with results from crosshole GPR velocity estimation. Such improved velocity estimation may have important implications for using surface reflection GPR to map, e.g., porosity for fully saturated media or soil moisture changes in partially saturated media because these physical properties depend on the dielectric permittivity and thereby also the GPR wave velocity.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S355-S364 ◽  
Author(s):  
Jianhang Yin ◽  
Nori Nakata

Diffracted waves contain a great deal of valuable information about small-scale subsurface structure such as faults, pinch-outs, karsts, and fractures, which are closely related to hydrocarbon accumulation and production. Therefore, diffraction separation and imaging with high spatial resolution play an increasingly critical role in seismic exploration. We have applied the geometric-mean reverse time migration (GmRTM) method to diffracted waves for imaging only subsurface diffractors based on the difference of the wave phenomena between diffracted and reflected waves. Numerical tests prove the advantages of this method on diffraction imaging with higher resolution as well as fewer artifacts compared to conventional RTM even when we only have a small number of receivers. Then, we developed a workflow to extract diffraction information using a fully data-driven method, called common-reflection surface (CRS), before we applied GmRTM. Application of this workflow indicates that GmRTM further improves the quality of the image by combining with the diffraction-separation technique CRS in the data domain.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. R625-R640 ◽  
Author(s):  
Bowu Jiang ◽  
Jianfeng Zhang

We have developed an explicit inverse approach with a Hessian matrix for the least-squares (LS) implementation of prestack time migration (PSTM). A full Hessian matrix is divided into a series of computationally tractable small-sized matrices using a localized approach, thus significantly reducing the size of the inversion. The scheme is implemented by dividing the imaging volume into a series of subvolumes related to the blockwise Hessian matrices that govern the mapping relationship between the migrated result and corresponding reflectivity. The proposed blockwise LS-PSTM can be implemented in a target-oriented fashion. The localized approach that we use to modify the Hessian matrix can eliminate the boundary effects originating from the blockwise implementation. We derive the explicit formula of the offset-dependent Hessian matrix using the deconvolution imaging condition with an analytical Green’s function of PSTM. This avoids the challenging task of estimating the source wavelet. Moreover, migrated gathers can be generated with the proposed scheme. The smaller size of the blockwise Hessian matrix makes it possible to incorporate the total-variation regularization into the inversion, thus attenuating noises significantly. We revealed the proposed blockwise LS-PSTM with synthetic and field data sets. Higher quality common-reflection-point gathers of the field data are obtained.


Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. S73-S82 ◽  
Author(s):  
Sergius Dell ◽  
Dirk Gajewski ◽  
Claudia Vanelle

Time migration is an attractive tool to produce a subsurface image because it is faster and less sensitive to velocities errors than depth migration. However, a highly focused time image is only achievable with well-determined time-migration velocities. Therefore, a refinement of the initial time-migration velocities often is required. We introduced a new technique for prestack time migration, based on the common-migrated-reflector-element stack of common scatterpoint gathers, including an automatic update of time-migration velocities. The common scatterpoint gathers are generated using a new formulation of the double-square-root equation that is parametrized with the common-offset apex time. The common-migrated-reflector-element stack is a multiparameter stacking technique based on the Taylor expansion of traveltimes of time-migrated reflections in the paraxial vicinity of the image ray. Our 2D synthetic and field data examples demonstrated that the proposed method provides updated time-migration velocities that are more robust and have higher resolution compared with the initial time-migration velocities. The prestack time migration method also showed a clear improvement of the focusing of reflections for such geologic features as faults and salt structures.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. S187-S200 ◽  
Author(s):  
Dmitrii Merzlikin ◽  
Sergey Fomel ◽  
Mrinal K. Sen

Diffraction imaging aims to emphasize small-scale subsurface heterogeneities, such as faults, pinch-outs, fracture swarms, channels, etc. and can help seismic reservoir characterization. The key step in diffraction imaging workflows is based on the separation procedure suppressing higher energy reflections and emphasizing diffractions, after which diffractions can be imaged independently. Separation results often contain crosstalk between reflections and diffractions and are prone to noise. We have developed an inversion scheme to reduce the crosstalk and denoise diffractions. The scheme decomposes an input full wavefield into three components: reflections, diffractions, and noise. We construct the inverted forward modeling operator as the chain of three operators: Kirchhoff modeling, plane-wave destruction, and path-summation integral filter. Reflections and diffractions have the same modeling operator. Separation of the components is done by shaping regularization. We impose sparsity constraints to extract diffractions, enforce smoothing along dominant local event slopes to restore reflections, and suppress the crosstalk between the components by local signal-and-noise orthogonalization. Synthetic- and field-data examples confirm the effectiveness of the proposed method.


2015 ◽  
Vol 3 (1) ◽  
pp. SF69-SF79 ◽  
Author(s):  
Ioan Sturzu ◽  
Alexander Mihai Popovici ◽  
Tijmen Jan Moser ◽  
Sudha Sudhakar

Diffraction imaging is recognized as a new approach to image small-scale fractures in shale and carbonate reservoirs. By identifying the areas with increased natural fracture density, reservoir engineers can design an optimal well placement program that targets the sweet spots (areas with increased production), and minimizes the total number of wells used for a prospective area. High-resolution imaging of the small-scale fractures in shale reservoirs such as Eagle Ford, Bakken, Utica, and Woodbine in the US, and Horn River, Montney, and Utica in Canada improves the prospect characterization and predrill assessment of the geologic conditions, improves the production and recovery efficiency, reduces field development cost, and decreases the environmental impact of developing the field by using fewer wells to optimally produce the reservoir. We evaluated several field data examples using a method of obtaining images of diffractors using specularity filtering that could be performed in depth and time migration. Provided that a good migration velocity was available, we used the deviation of ray scattering from Snell’s law to attenuate reflection energy in the migrated image. The resulting diffraction images reveal much of the structural detail that was previously obscured by reflection energy.


Sign in / Sign up

Export Citation Format

Share Document