An anelliptic approximation for geometric spreading in transversely isotropic and orthorhombic media

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. C37-C47 ◽  
Author(s):  
Shibo Xu ◽  
Alexey Stovas ◽  
Yanadet Sripanich

The relative geometric spreading along the raypath contributes to the amplitude decay of the seismic wave propagation that needs to be considered for amplitude variation with offset or other seismic data processing methods that require the true amplitude processing. Expressing the P-wave geometric spreading factor in terms of the offset-traveltime-based parameters is a more practical and convenient way because these parameters can be estimated from the nonhyperbolic velocity analysis. We have developed an anelliptic approximation for the relative geometric spreading of P-wave in a homogeneous transversely isotropic medium with vertical symmetry axis (VTI) and an orthorhombic (ORT) medium under the acoustic anisotropy assumption. The coefficients in our approximation are only defined within the symmetry planes and computed from fitting with the exact parametric expression. For an ORT model, due to the symmetric behavior in different symmetry planes, the other coefficients in the approximation can be easily obtained by making corresponding changes in indices from the computed coefficients in one symmetry plane. From the numerical examples, we found that for a homogeneous VTI model, the anelliptic approximation is more accurate than the generalized nonhyperbolic moveout approximation form for larger offset. For a homogeneous ORT model, our anelliptic approximation is more accurate than its traveltime-based counterparts. Using the Dix-type equations for the effective parameters, our anelliptic form approximation is extended to a multilayered VTI and ORT models and has accurate results in both models.

Geophysics ◽  
2006 ◽  
Vol 71 (4) ◽  
pp. U59-U65 ◽  
Author(s):  
Pawan Dewangan ◽  
Ilya Tsvankin

Building accurate interval velocity models is critically important for seismic imaging and AVO (amplitude variation with offset) analysis. Here, we adapt the [Formula: see text] method to develop an exact technique for constructing the interval traveltime-offset function in a target zone beneath a horizontally layered overburden. All layers in the model can be anisotropic, with an essential assumption that the overburden has a horizontal symmetry plane (i.e., up-down symmetry). Our layer-stripping algorithm is entirely data-driven and, in contrast to the generalized Dix equations, does not require knowledge of the velocity field anywhere in the medium. Important advantages of our approach compared to the Dix-style formalism also include the ability to handle mode-converted waves, long-offset data, and laterally heterogeneous target layers with multiple, curved reflectors. Numerical tests confirm the high accuracy of the algorithm in computing the interval traveltimes of both PP- and PS-waves in a dipping, transversely isotropic layer with a tilted symmetry axis (TTI medium) beneath an anisotropic overburden. In combination with the inversion techniques developed for homogeneous TTI models, the proposed layer stripping of PP and PS data can be used to estimate the interval parameters of TTI formations in such important exploration areas as the Canadian Foothills. Potential applications of this methodology also include the dip-moveout inversion for the P-wave time-processing parameter [Formula: see text] and stable computation of the interval long-spread (nonhyperbolic) moveout for purposes of anisotropic velocity analysis.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. WA157-WA166 ◽  
Author(s):  
Samik Sil ◽  
Mrinal K. Sen ◽  
Boris Gurevich

To improve quantitative interpretation of seismic data, we analyze the effect of fluid substitution in a porous and fractured medium on elastic properties and reflection coefficients. This analysis uses closed-form expressions suitable for fluid substitution in transversely isotropic media with a horizontal symmetry axis (HTI). For the HTI medium, the effect of changing porosity and water saturation on (1) P-wave moduli, (2) horizontal and vertical velocities, (3) anisotropic parameters, and (4) reflection coefficients are examined. The effects of fracture density on these four parameters are also studied. For the model used in this study, a 35% increase in porosity lowers the value of P-wave moduli by maximum of 45%. Consistent with the reduction in P-wave moduli, P-wave velocities also decrease by maximum of 17% with a similar increment in porosity. The reduction is always larger for the horizontal P-wave modulus than for the vertical one and is nearly independent of fracture density. The magnitude of the anisotropic parameters of the fractured medium also changes with increased porosity depending on the changes in the value of P-wave moduli. The reflection coefficients at an interface of the fractured medium with an isotropic medium change in accordance with the above observations and lead to an increase in anisotropic amplitude variation with offset (AVO) gradient with porosity. Additionally, we observe a maximum increase in P-wave modulus and velocity by 30% and 8%, respectively, with a 100% increase in water saturation. Water saturation also changes the anisotropic parameters and reflection coefficients. Increase in water saturation considerably increases the magnitude of the anisotropic AVO gradient irrespective of fracture density. From this study, we conclude that porosity and water saturation have a significant impact on the four studied parameters and the impacts are seismically detectable.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. C153-C162 ◽  
Author(s):  
Shibo Xu ◽  
Alexey Stovas ◽  
Hitoshi Mikada

Wavefield properties such as traveltime and relative geometric spreading (traveltime derivatives) are highly essential in seismic data processing and can be used in stacking, time-domain migration, and amplitude variation with offset analysis. Due to the complexity of an elastic orthorhombic (ORT) medium, analysis of these properties becomes reasonably difficult, where accurate explicit-form approximations are highly recommended. We have defined the shifted hyperbola form, Taylor series (TS), and the rational form (RF) approximations for P-wave traveltime and relative geometric spreading in an elastic ORT model. Because the parametric form expression for the P-wave vertical slowness in the derivation is too complicated, TS (expansion in offset) is applied to facilitate the derivation of approximate coefficients. The same approximation forms computed in the acoustic ORT model also are derived for comparison. In the numerical tests, three ORT models with parameters obtained from real data are used to test the accuracy of each approximation. The numerical examples yield results in which, apart from the error along the y-axis in ORT model 2 for the relative geometric spreading, the RF approximations all are very accurate for all of the tested models in practical applications.


Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1570-1582 ◽  
Author(s):  
Colin M. Sayers ◽  
Daniel A. Ebrom

Natural fractures in reservoirs, and in the caprock overlying the reservoir, play an important role in determining fluid flow during production. The density and orientation of sets of fractures is therefore of great interest. Rocks possessing an anisotropic fabric and a preferred orientation of fractures display both polar and azimuthal anisotropy. Sedimentary rocks containing several sets of vertical fractures may be approximated as having monoclinic symmetry with symmetry plane parallel to the layers if, in the absence of fractures, the rock is transversely isotropic with symmetry axis perpendicular to the bedding plane. A nonhyperbolic traveltime equation, which can be used in the presence of azimuthally anisotropic layered media, can be obtained from an expansion of the inverse‐squared ray velocity in spherical harmonics. For a single set of aligned fractures, application of this equation to traveltime data acquired at a sufficient number of azimuths allows the strike of the fractures to be estimated. Analysis of the traveltimes measured in a physical model simulation of a reverse vertical seismic profile in an azimuthally anisotropic medium shows the medium to be orthorhombic with principal axes in agreement with those given by an independent shear‐wave experiment. In contrast to previous work, no knowledge of the orientation of the symmetry planes is required. The method is therefore applicable to P‐wave data collected at multiple azimuths using multiple offset vertical seismic profiling (VSP) techniques.


Geophysics ◽  
1993 ◽  
Vol 58 (6) ◽  
pp. 883-888 ◽  
Author(s):  
Ki Young Kim ◽  
Keith H. Wrolstad ◽  
Fred Aminzadeh

Velocity anisotropy should be taken into account when analyzing the amplitude variation with offset (AVO) response of gas sands encased in shales. The anisotropic effects on the AVO of gas sands in transversely isotropic (TI) media are reviewed. Reflection coefficients in TI media are computed using a planewave formula based on ray theory. We present results of modeling special cases of exploration interest having positive reflectivity, near‐zero reflectivity, and negative reflectivity. The AVO reflectivity in anisotropic media can be decomposed into two parts; one for isotropy and the other for anisotropy. Zero‐offset reflectivity and Poisson’s ratio contrast are the most significant parameters for the isotropic component while the δ difference (Δδ) between shale and gas sand is the most important factor for the anisotropic component. For typical values of Tl anisotropy in shale (positive δ and ε), both δ difference (Δδ) and ε difference (Δε) amplify AVO effects. For small angles of incidence, Δδ plays an important role in AVO while Δε dominates for large angles of incidence. For typical values of δ and ε, the effects of anisotropy in shale are: (1) a more rapid increase in AVO for Class 3 and Class 2 gas sands, (2) a more rapid decrease in AVO for Class 1 gas sands, and (3) a shift in the offset of polarity reversal for some Class 1 and Class 2 gas sands.


Geophysics ◽  
1998 ◽  
Vol 63 (3) ◽  
pp. 1079-1092 ◽  
Author(s):  
Vladimir Grechka ◽  
Ilya Tsvankin

We present a new equation for normal‐moveout (NMO) velocity that describes azimuthally dependent reflection traveltimes of pure modes from both horizontal and dipping reflectors in arbitrary anisotropic inhomogeneous media. With the exception of anomalous areas such as those where common‐midpoint (CMP) reflection time decreases with offset, the azimuthal variation of NMO velocity represents an ellipse in the horizontal plane, with the orientation of the axes determined by the properties of the medium and the direction of the reflector normal. In general, a minimum of three azimuthal measurements is necessary to reconstruct the best‐fit ellipse and obtain NMO velocity in all azimuthal directions. This result provides a simple way to correct for the azimuthal variation in stacking velocity often observed in 3-D surveys. Even more importantly, analytic expressions for the parameters of the NMO ellipse can be used in the inversion of moveout data for the anisotropic coefficients of the medium. For homogeneous transversely isotropic media with a vertical axis of symmetry (VTI media), our equation for azimuthally dependent NMO velocity from dipping reflectors becomes a relatively simple function of phase velocity and its derivatives. We show that the zero‐dip NMO velocity Vnmo(0) and the anisotropic coefficient η are sufficient to describe the P-wave NMO velocity for any orientation of the CMP line with respect to the dip plane of the reflector. Using our formalism, Vnmo(0) and η (the only parameters needed for time processing) can be found from the dip‐dependent NMO velocity at any azimuth or, alternatively, from the azimuthally dependent NMO for a single dipping reflector. We also apply this theory to more complicated azimuthally anisotropic models with the orthorhombic symmetry used to describe fractured reservoirs. For reflections from horizontal interfaces in orthorhombic media, the axes of the normal moveout ellipse are aligned with the vertical symmetry planes. Therefore, azimuthal P-wave moveout measurements can be inverted for the orientation of the symmetry planes (typically determined by the fracture direction) and the NMO velocities within them. If the vertical velocity is known, symmetry‐plane NMO velocities make it possible to estimate two anisotropic parameters equivalent to Thomsen’s coefficient δ for transversely isotropic media.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C253-C263 ◽  
Author(s):  
Yanadet Sripanich ◽  
Sergey Fomel

Moveout approximations for reflection traveltimes are typically based on a truncated Taylor expansion of traveltime squared around the zero offset. The fourth-order Taylor expansion involves normal moveout velocities and quartic coefficients. We have derived general expressions for layer-stripping second- and fourth-order parameters in horizontally layered anisotropic strata and specified them for two important cases: horizontally stacked aligned orthorhombic layers and azimuthally rotated orthorhombic layers. In the first of these cases, the formula involving the out-of-symmetry-plane quartic coefficients has a simple functional form and possesses some similarity to the previously known formulas corresponding to the 2D in-symmetry-plane counterparts in vertically transversely isotropic (VTI) media. The error of approximating effective parameters by using approximate VTI formulas can be significant in comparison with the exact formulas that we have derived. We have proposed a framework for deriving Dix-type inversion formulas for interval parameter estimation from traveltime expansion coefficients in the general case and in the specific case of aligned orthorhombic layers. The averaging formulas for calculation of effective parameters and the layer-stripping formulas for interval parameter estimation are readily applicable to 3D seismic reflection processing in layered anisotropic media.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. WB117-WB127 ◽  
Author(s):  
Xiaoxiang Wang ◽  
Ilya Tsvankin

Moveout analysis of long-spread P-wave data is widely used to estimate the key time-processing parameter [Formula: see text] in layered transversely isotropic media with a vertical symmetry axis (VTI). Inversion for interval [Formula: see text] values, however, suffers from instability caused by the trade-off between the effective moveout parameters and by subsequent error amplification during Dix-type layer stripping. We propose an alternative approach to nonhyperbolic moveout inversion based on the velocity-independent layer-stripping (VILS) method of Dewangan and Tsvankin. Also, we develop the 3D version of VILS and apply it to interval parameter estimation in orthorhombic media using wide-azimuth, long-spread data. If the overburden is laterally homogeneous and has a horizontal symmetry plane, VILS produces the exact interval traveltime-offset function in the target layer without knowledgeof the velocity field. Hence, Dix-type differentiation of moveout parameters used in existing techniques is replaced by the much more stable layer stripping of reflection traveltimes. The interval traveltimes are then inverted for the moveout parameters using the single-layer nonhyperbolic moveout equation. The superior accuracy and stability of the algorithm are illustrated on ray-traced synthetic data for typical VTI and orthorhombic models. Even small correlated noise in reflection traveltimes causes substantial distortions in the interval [Formula: see text] values computed by conventional Dix-type differentiation. In contrast, the output of VILS is insensitive to mild correlated traveltime errors. The algorithm is also tested on wide-azimuth P-wave reflection data recorded above a fractured reservoir at Rulison field in Colorado. The interval moveout parameters estimated by VILS in the shale layer above the reservoir are more plausible and less influenced by noise than those obtained by the Dix-type method.


Geophysics ◽  
1996 ◽  
Vol 61 (3) ◽  
pp. 835-845 ◽  
Author(s):  
John Anderson ◽  
Tariq Alkhalifah ◽  
Ilya Tsvankin

The main advantage of Fowler’s dip‐moveout (DMO) method is the ability to perform velocity analysis along with the DMO removal. This feature of Fowler DMO becomes even more attractive in anisotropic media, where imaging methods are hampered by the difficulty in reconstructing the velocity field from surface data. We have devised a Fowler‐type DMO algorithm for transversely isotropic media using the analytic expression for normal‐moveout velocity. The parameter‐estimation procedure is based on the results of Alkhalifah and Tsvankin showing that in transversely isotropic media with a vertical axis of symmetry (VTI) the P‐wave normal‐moveout (NMO) velocity as a function of ray parameter can be described fully by just two coefficients: the zero‐dip NMO velocity [Formula: see text] and the anisotropic parameter η (η reduces to the difference between Thomsen parameters ε and δ in the limit of weak anisotropy). In this extension of Fowler DMO, resampling in the frequency‐wavenumber domain makes it possible to obtain the values of [Formula: see text] and η by inspecting zero‐offset (stacked) panels for different pairs of the two parameters. Since most of the computing time is spent on generating constant‐velocity stacks, the added computational effort caused by the presence of anisotropy is relatively minor. Synthetic and field‐data examples demonstrate that the isotropic Fowler DMO technique fails to generate an accurate zero‐offset section and to obtain the zero‐dip NMO velocity for nonelliptical VTI models. In contrast, this anisotropic algorithm allows one to find the values of the parameters [Formula: see text] and η (sufficient to perform time migration as well) and to correct for the influence of transverse isotropy in the DMO processing. When combined with poststack F-K Stolt migration, this method represents a complete inversion‐processing sequence capable of recovering the effective parameters of transversely isotropic media and producing migrated images for the best‐fit homogeneous anisotropic model.


Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1253-1265 ◽  
Author(s):  
Maria A. Pérez ◽  
Richard L. Gibson ◽  
M. Nafi Toksöz

Azimuthally dependent P-wave amplitude variation with offset (AVO) responses can be related theoretically to open fracture orientation and have been suggested as a geophysical tool to identify fracture orientation in fractured oil and gas reservoirs. A field experiment conducted recently over a fractured reservoir in the Barinas Basin, Venezuela provides data for an excellent test of this approach. Three lines of data were collected in three different azimuths, and three component receivers were used. The distribution of fractures in this reservoir was obtained previously using measurements of shear‐wave splitting from P-S converted waves from the same data set. In this work, we use P-wave data to see if the data can yield the same information using azimuthal variation of P-wave AVO responses. Results obtained from the azimuthal P-wave AVO analysis corroborate the fracture orientation obtained previously using P-S converted waves. This analysis with field data is an example of the high potential of P-waves to detect fracture effects on seismic wave propagation.


Sign in / Sign up

Export Citation Format

Share Document