Effects of transverse isotropy on P‐wave AVO for gas sands

Geophysics ◽  
1993 ◽  
Vol 58 (6) ◽  
pp. 883-888 ◽  
Author(s):  
Ki Young Kim ◽  
Keith H. Wrolstad ◽  
Fred Aminzadeh

Velocity anisotropy should be taken into account when analyzing the amplitude variation with offset (AVO) response of gas sands encased in shales. The anisotropic effects on the AVO of gas sands in transversely isotropic (TI) media are reviewed. Reflection coefficients in TI media are computed using a planewave formula based on ray theory. We present results of modeling special cases of exploration interest having positive reflectivity, near‐zero reflectivity, and negative reflectivity. The AVO reflectivity in anisotropic media can be decomposed into two parts; one for isotropy and the other for anisotropy. Zero‐offset reflectivity and Poisson’s ratio contrast are the most significant parameters for the isotropic component while the δ difference (Δδ) between shale and gas sand is the most important factor for the anisotropic component. For typical values of Tl anisotropy in shale (positive δ and ε), both δ difference (Δδ) and ε difference (Δε) amplify AVO effects. For small angles of incidence, Δδ plays an important role in AVO while Δε dominates for large angles of incidence. For typical values of δ and ε, the effects of anisotropy in shale are: (1) a more rapid increase in AVO for Class 3 and Class 2 gas sands, (2) a more rapid decrease in AVO for Class 1 gas sands, and (3) a shift in the offset of polarity reversal for some Class 1 and Class 2 gas sands.

Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. C175-C185 ◽  
Author(s):  
Ivan Pšenčík ◽  
Véronique Farra

We have developed approximate nonhyperbolic P-wave moveout formulas applicable to weakly or moderately anisotropic media of arbitrary anisotropy symmetry and orientation. Instead of the commonly used Taylor expansion of the square of the reflection traveltime in terms of the square of the offset, we expand the square of the reflection traveltime in terms of weak-anisotropy (WA) parameters. No acoustic approximation is used. We specify the formulas designed for anisotropy of arbitrary symmetry for the transversely isotropic (TI) media with the axis of symmetry oriented arbitrarily in the 3D space. Resulting formulas depend on three P-wave WA parameters specifying the TI symmetry and two angles specifying the orientation of the axis of symmetry. Tests of the accuracy of the more accurate of the approximate formulas indicate that maximum relative errors do not exceed 0.3% or 2.5% for weak or moderate P-wave anisotropy, respectively.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1305-1315 ◽  
Author(s):  
Hongbo Zhou ◽  
George A. McMechan

An analytical formula for geometrical spreading is derived for a horizontally layered transversely isotropic medium with a vertical symmetry axis (VTI). With this expression, geometrical spreading can be determined using only the anisotropy parameters in the first layer, the traveltime derivatives, and the source‐receiver offset. Explicit, numerically feasible expressions for geometrical spreading are obtained for special cases of transverse isotropy (weak anisotropy and elliptic anisotropy). Geometrical spreading can be calculated for transversly isotropic (TI) media by using picked traveltimes of primary nonhyperbolic P-wave reflections without having to know the actual parameters in the deeper subsurface; no ray tracing is needed. Synthetic examples verify the algorithm and show that it is numerically feasible for calculation of geometrical spreading. For media with a few (4–5) layers, relative errors in the computed geometrical spreading remain less than 0.5% for offset/depth ratios less than 1.0. Errors that change with offset are attributed to inaccuracy in the expression used for nonhyberbolic moveout. Geometrical spreading is most sensitive to errors in NMO velocity, followed by errors in zero‐offset reflection time, followed by errors in anisotropy of the surface layer. New relations between group and phase velocities and between group and phase angles are shown in appendices.


Geophysics ◽  
1998 ◽  
Vol 63 (1) ◽  
pp. 204-212 ◽  
Author(s):  
Vladimir Y. Grechka

Nonelliptic transverse isotropy may cause pronounced nonhyperbolic moveout of long‐spread P-wave reflection data. Lateral heterogeneity may alter the moveout in much the same way, and one can expect that a given P-wave reflection moveout may be interpreted equally well in terms of parameters of homogeneous transversely isotropic (TI) or laterally heterogeneous (LH) isotropic models. Here, the common‐midpoint (CMP) moveout of a P-wave reflected from a horizontal interface beneath a weakly laterally heterogeneous medium that is also weakly transversely isotropic is represented analytically in the form similar to that in homogeneous TI media. Both the normal‐moveout (NMO) velocity and the quartic moveout coefficient contain derivatives of the zero‐ offset traveltime t0 and the NMO velocity Vnmo with respect to the lateral coordinate. Despite the presence of heterogeneity, nonhyperbolic velocity analysis can be performed in the same way as in homogeneous TI models. If all parameters of the medium are linear functions of the lateral coordinate, heterogeneity does not influence the results of inversion for the anisotropic parameter η. However, to find η in the case of general lateral heterogeneity, the second derivative of Vnmo and the fourth derivative of t0 are needed. Since these high‐order derivatives are calculated from the data measured at discrete points by numerical differentiation, stability of η estimation is further reduced as compared to that in homogeneous TI media. Consequently, the trade‐off between anisotropy and heterogeneity significantly complicates the inversion of P-wave reflection traveltimes, even in the simplest model of a single plane layer.


Geophysics ◽  
1996 ◽  
Vol 61 (3) ◽  
pp. 835-845 ◽  
Author(s):  
John Anderson ◽  
Tariq Alkhalifah ◽  
Ilya Tsvankin

The main advantage of Fowler’s dip‐moveout (DMO) method is the ability to perform velocity analysis along with the DMO removal. This feature of Fowler DMO becomes even more attractive in anisotropic media, where imaging methods are hampered by the difficulty in reconstructing the velocity field from surface data. We have devised a Fowler‐type DMO algorithm for transversely isotropic media using the analytic expression for normal‐moveout velocity. The parameter‐estimation procedure is based on the results of Alkhalifah and Tsvankin showing that in transversely isotropic media with a vertical axis of symmetry (VTI) the P‐wave normal‐moveout (NMO) velocity as a function of ray parameter can be described fully by just two coefficients: the zero‐dip NMO velocity [Formula: see text] and the anisotropic parameter η (η reduces to the difference between Thomsen parameters ε and δ in the limit of weak anisotropy). In this extension of Fowler DMO, resampling in the frequency‐wavenumber domain makes it possible to obtain the values of [Formula: see text] and η by inspecting zero‐offset (stacked) panels for different pairs of the two parameters. Since most of the computing time is spent on generating constant‐velocity stacks, the added computational effort caused by the presence of anisotropy is relatively minor. Synthetic and field‐data examples demonstrate that the isotropic Fowler DMO technique fails to generate an accurate zero‐offset section and to obtain the zero‐dip NMO velocity for nonelliptical VTI models. In contrast, this anisotropic algorithm allows one to find the values of the parameters [Formula: see text] and η (sufficient to perform time migration as well) and to correct for the influence of transverse isotropy in the DMO processing. When combined with poststack F-K Stolt migration, this method represents a complete inversion‐processing sequence capable of recovering the effective parameters of transversely isotropic media and producing migrated images for the best‐fit homogeneous anisotropic model.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. D161-D170 ◽  
Author(s):  
Xiaoxia Xu ◽  
Ilya Tsvankin

Compensation for geometrical spreading along a raypath is one of the key steps in AVO (amplitude-variation-with-offset) analysis, in particular, for wide-azimuth surveys. Here, we propose an efficient methodology to correct long-spread, wide-azimuth reflection data for geometrical spreading in stratified azimuthally anisotropic media. The P-wave geometrical-spreading factor is expressed through the reflection traveltime described by a nonhyperbolic moveout equation that has the same form as in VTI (transversely isotropic with a vertical symmetry axis) media. The adapted VTI equation is parameterized by the normal-moveout (NMO) ellipse and the azimuthally varying anellipticity parameter [Formula: see text]. To estimate the moveout parameters, we apply a 3D nonhyperbolic semblance algorithm of Vasconcelos and Tsvankin that operates simultaneously with traces at all offsets andazimuths. The estimated moveout parameters are used as the input in our geometrical-spreading computation. Numerical tests for models composed of orthorhombic layers with strong, depth-varying velocity anisotropy confirm the high accuracy of our travetime-fitting procedure and, therefore, of the geometrical-spreading correction. Because our algorithm is based entirely on the kinematics of reflection arrivals, it can be incorporated readily into the processing flow of azimuthal AVO analysis. In combination with the nonhyperbolic moveout inversion, we apply our method to wide-azimuth P-wave data collected at the Weyburn field in Canada. The geometrical-spreading factor for the reflection from the top of the fractured reservoir is clearly influenced by azimuthal anisotropy in the overburden, which should cause distortions in the azimuthal AVO attributes. This case study confirms that the azimuthal variation of the geometrical-spreading factor often is comparable to or exceeds that of the reflection coefficient.


2020 ◽  
Vol 8 (1) ◽  
pp. SA25-SA33
Author(s):  
Ellen Xiaoxia Xu ◽  
Yu Jin ◽  
Sarah Coyle ◽  
Dileep Tiwary ◽  
Henry Posamentier ◽  
...  

Seismic amplitude has played a critical role in the exploration and exploitation of hydrocarbon in West Africa. Class 3 and 2 amplitude variation with offset (AVO) was extensively used as a direct hydrocarbon indicator and reservoir prediction tool in Neogene assets. As exploration advanced to deeper targets with class 1 AVO seismic character, the usage of seismic amplitude for reservoir presence and quality prediction became challenged. To overcome this obstacle, (1) we used seismic geomorphology to infer reservoir presence and precisely target geophysical analysis on reservoir prone intervals, (2) we applied rigorous prestack data preparation to ensure the accuracy and precision of AVO simultaneous inversion for reservoir quality prediction, and (3) we used lateral statistic method to sum up AVO behavior in regions of contrasts to infer reservoir quality changes. We have evaluated a case study in which the use of the above three techniques resulted in confident prediction of reservoir presence and quality. Our results reduced the uncertainty around the biggest risk element in reservoir among the source, charge, and trap mechanism in the prospecting area. This work ultimately made a significant contribution toward a confident resource booking.


Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1600-1610 ◽  
Author(s):  
Andres Pech ◽  
Ilya Tsvankin ◽  
Vladimir Grechka

Nonhyperbolic (long‐spread) moveout provides essential information for a number of seismic inversion/processing applications, particularly for parameter estimation in anisotropic media. Here, we present an analytic expression for the quartic moveout coefficient A4 that controls the magnitude of nonhyperbolic moveout of pure (nonconverted) modes. Our result takes into account reflection‐point dispersal on irregular interfaces and is valid for arbitrarily anisotropic, heterogeneous media. All quantities needed to compute A4 can be evaluated during the tracing of the zero‐offset ray, so long‐spread moveout can be modeled without time‐consuming multioffset, multiazimuth ray tracing. The general equation for the quartic coefficient is then used to study azimuthally varying nonhyperbolic moveout of P‐waves in a dipping transversely isotropic (TI) layer with an arbitrary tilt ν of the symmetry axis. Assuming that the symmetry axis is confined to the dip plane, we employed the weak‐anisotropy approximation to analyze the dependence of A4 on the anisotropic parameters. The linearized expression for A4 is proportional to the anellipticity coefficient η ≈ ε − δ and does not depend on the individual values of the Thomsen parameters. Typically, the magnitude of nonhyperbolic moveout in tilted TI media above a dipping reflector is highest near the reflector strike, whereas deviations from hyperbolic moveout on the dip line are substantial only for mild dips. The azimuthal variation of the quartic coefficient is governed by the tilt ν and reflector dip φ and has a much more complicated character than the NMO–velocity ellipse. For example, if the symmetry axis is vertical (VTI media, ν = 0) and the dip φ < 30°, A4 goes to zero on two lines with different azimuths where it changes sign. If the symmetry axis is orthogonal to the reflector (this model is typical for thrust‐and‐fold belts), the strike‐line quartic coefficient is defined by the well‐known expression for a horizontal VTI layer (i.e., it is independent of dip), while the dip‐line A4 is proportional to cos4 φ and rapidly decreases with dip. The high sensitivity of the quartic moveout coefficient to the parameter η and the tilt of the symmetry axis can be exploited in the inversion of wide‐azimuth, long‐spread P‐wave data for the parameters of TI media.


2016 ◽  
Vol 4 (4) ◽  
pp. T613-T625 ◽  
Author(s):  
Qizhen Du ◽  
Bo Zhang ◽  
Xianjun Meng ◽  
Chengfeng Guo ◽  
Gang Chen ◽  
...  

Three-term amplitude-variation with offset (AVO) inversion generally suffers from instability when there is limited prior geologic or petrophysical constraints. Two-term AVO inversion shows higher instability compared with three-term AVO inversion. However, density, which is important in the fluid-type estimation, cannot be recovered from two-term AVO inversion. To reliably predict the P- and S-waves and density, we have developed a robust two-step joint PP- and PS-wave three-term AVO-inversion method. Our inversion workflow consists of two steps. The first step is to estimate the P- and S-wave reflectivities using Stewart’s joint two-term PP- and PS-AVO inversion. The second step is to treat the P-wave reflectivity obtained from the first step as the prior constraint to remove the P-wave velocity related-term from the three-term Aki-Richards PP-wave approximated reflection coefficient equation, and then the reduced PP-wave reflection coefficient equation is combined with the PS-wave reflection coefficient equation to estimate the S-wave and density reflectivities. We determined the effectiveness of our method by first applying it to synthetic models and then to field data. We also analyzed the condition number of the coefficient matrix to illustrate the stability of the proposed method. The estimated results using proposed method are superior to those obtained from three-term AVO inversion.


Geophysics ◽  
2007 ◽  
Vol 72 (6) ◽  
pp. C95-C104 ◽  
Author(s):  
Gabriel Perez ◽  
Kurt J. Marfurt

Long-offset or high-incident-angle seismic reflections provide us with improved velocity resolution, better leverage against multiples, less contamination by ground roll, and information that is often critical when estimating lithology and fluid product. Unfortunately, high-incident-angle seismic reflections suffer not only from nonhyperbolic moveout but also from wavelet stretch during imaging, resulting in lower-resolution images that mix the response from adjacent lithologies. For an arbitrary acoustic medium, wavelet stretch from prestack migration depends only on the cosine of the reflection angle, such that the amount of wavelet stretch will be the same for all samples of a common-reflection-angle migrated trace. Thus, we are able to implement a wavelet stretch correction by applying a simple stationary spectral shaping operation to common-angle migrated traces. We obtain such traces directly by a prestack Kirchhoff migration algorithm. Correcting for stretch effectively increases the fold of imaged data, far beyond that achieved in conventional migration, resulting in improved signal-to-noise ratio of the final stacked section. Increasing the fidelity of large incident angles results in images with improved vertical and lateral resolution and with increased angular illumination, valuable for amplitude variation with angle (AVA) and amplitude variation with offset (AVO) analysis. Finally, such large-angle images are more sensitive to and therefore provide increased leverage over errors in velocity and velocity anisotropy. These ideas were applied to prestack time migration on seismic data from the Fort Worth basin, in Texas.


Sign in / Sign up

Export Citation Format

Share Document