Seismic-scale dependence of the effective bulk modulus of pore fluid upon water saturation

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. MR81-MR91 ◽  
Author(s):  
Uri Wollner ◽  
Jack Dvorkin

We apply a rock-physics model established from fine-scale data (well or laboratory) to the seismically derived elastic variables (the impedances and bulk density) to arrive at the seismic-scale total porosity, clay content, and water saturation. These three outputs are defined as the volume-averaged porosity, clay content, and porosity-weighted water saturation, respectively. To use the rock-physics model, we need to know how to relate the bulk modulus of the pore fluid to water saturation in the presence of hydrocarbons. At the wellbore-measurement scale, this relation is typically the saturation-weighted harmonic average of the bulk moduli of the water and hydrocarbon. The question posed here is what this relation is at the seismic scale. The method of solution is based on the wellbore-scale data. Specifically, we seek the seismic-scale bulk modulus of the pore fluid that, if used in the rock-physics model, will yield the Backus-upscaled elastic constants at the well from the above-defined seismic-scale petrophysical variables. The answer depends on the vertical distribution of all these variables. By using examples of synthetic and real wells and assuming the lack of hydraulic communication between adjacent rock bodies, we find that this relation trends toward the arithmetic average of the individual bulk moduli of the pore-fluid phases. In fact, it falls in between the arithmetic average and the linear combination of 0.75 arithmetic and 0.25 harmonic averages. We also develop an approximate analytical solution under the assumption of weak elastic and porosity contrasts and for medium-to-high porosity sediment that indicates that the seismic-scale bulk modulus of the pore fluid is close to the arithmetic average of those in the individual layers.

Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. MR75-MR88 ◽  
Author(s):  
Jack Dvorkin ◽  
Uri Wollner

Rock-physics “velocity-porosity” transforms are usually established on sets of laboratory and/or well data with the latter data source being dominant in recent practice. The purpose of establishing such transforms is to (1) conduct forward modeling of the seismic response for various geologically plausible “what if” scenarios in the subsurface and (2) interpret seismic data for petrophysical properties and conditions, such as porosity, clay content, and pore fluid. Because the scale of investigation in the well is considerably smaller than that in reflection seismology, an important question is whether the rock-physics model established in the well can be used at the seismic scale. We use synthetic examples and well data to show that a rock-physics model established at the well approximately holds at the seismic scale, suggest a reason for this scale independence, and explore where it may be violated. The same question can be addressed as an inverse problem: Assume that we have a rock-physics transform and know that it works at the scale of investigation at which the elastic properties are seismically measured. What are the upscaled (smeared) petrophysical properties and conditions that these elastic properties point to? It appears that they are approximately the arithmetically volume-averaged porosity and clay content (in a simple quartz/clay setting) and are close to the arithmetically volume-averaged bulk modulus of the pore fluid (rather than averaged saturation).


2021 ◽  
Author(s):  
Vagif Suleymanov ◽  
Abdulhamid Almumtin ◽  
Guenther Glatz ◽  
Jack Dvorkin

Abstract Generated by the propagation of sound waves, seismic reflections are essentially the reflections at the interface between various subsurface formations. Traditionally, these reflections are interpreted in a qualitative way by mapping subsurface geology without quantifying the rock properties inside the strata, namely the porosity, mineralogy, and pore fluid. This study aims to conduct the needed quantitative interpretation by the means of rock physics to establish the relation between rock elastic and petrophysical properties for reservoir characterization. We conduct rock physics diagnostics to find a theoretical rock physics model relevant to the data by examining the wireline data from a clastic depositional environment associated with a tight gas sandstone in the Continental US. First, we conduct the rock physics diagnostics by using theoretical fluid substitution to establish the relevant rock physics models. Once these models are determined, we theoretically vary the thickness of the intervals, the pore fluid, as well as the porosity and mineralogy to generate geologically plausible pseudo-scenarios. Finally, Zoeppritz (1919) equations are exploited to obtain the expected amplitude versus offset (AVO) and the gradient versus intercept curves of these scenarios. The relationship between elastic and petrophysical properties was established using forward seismic modeling. Several theoretical rock physics models, namely Raymer-Dvorkin, soft-sand, stiff-sand, and constant-cement models were applied to the wireline data under examination. The modeling assumes that only two minerals are present: quartz and clay. The appropriate rock physics model appears to be constant-cement model with a high coordination number. The result is a seismic reflection catalogue that can serve as a field guide for interpreting real seismic reflections, as well as to determine the seismic visibility of the variations in the reservoir geometry, the pore fluid, and the porosity. The obtained reservoir properties may be extrapolated to prospects away from the well control to consider certain what-if scenarios like plausible lithology or fluid variations. This enables building of a catalogue of synthetic seismic reflections of rock properties to be used by the interpreter as a field guide relating seismic data to volumetric reservoir properties.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. F165-F171 ◽  
Author(s):  
Ingrid Cordon ◽  
Jack Dvorkin ◽  
Gary Mavko

We perturb the elastic properties and attenuation in the Arctic Mallik methane-hydrate reservoir to produce a set of plausible seismic signatures away from the existing well. These perturbations are driven by the changes we impose on porosity, clay content, hydrate saturation, and geometry. The key is a data-guided, theoretical, rock-physics model that we adopt to link velocity and attenuation to porosity, mineralogy, and amount of hydrate. We find that the seismic amplitude is very sensitive to the hydrate saturation in the host sand and its porosity as well as the porosity of the overburden shale. However, changes to the amount of clay in the sand only weakly alter the amplitude. Attenuation, which may be substantial, must be taken into account during hydrate reservoir characterization because it lowers the amplitude to an extent that may affect the hydrate-volume prediction. The spatial structure of the reservoir affects the seismic reflection: A thinly-layered reservoir produces a noticeably different amplitude than a massive reservoir with the same hydrate volume.


Geophysics ◽  
2021 ◽  
pp. 1-64
Author(s):  
Qi Hu ◽  
Scott Keating ◽  
Kristopher A. Innanen ◽  
Huaizhen Chen

Quantitative estimation of rock physics properties is an important part of reservoir characterization. Most current seismic workflows in this field are based on amplitude variation with offset. Building on recent work on high resolution multi-parameter inversion for reservoir characterization, we construct a rock-physics parameterized elastic full-waveform inversion (EFWI) scheme. Within a suitably-formed multi-parameter EFWI, in this case a 2D frequency-domain isotropic-elastic FWI with a truncated Gauss-Newton optimization, any rock physics model with a well-defined mapping between its parameters and seismic velocity/density can be examined. We select a three-parameter porosity, clay content, and water saturation (PCS) parameterization, and link them to elastic properties using three representative rock physics models: the Han empirical model, the Voigt-Reuss-Hill boundary model, and the Kuster and Toksöz inclusion model. Numerical examples suggest that conditioning issues, which make a sequential inversion (in which velocities and density are first determined through EFWI, followed by PCS parameters) unstable, are avoided in this direct approach. Significant variability in inversion fidelity is visible from one rock physics model to another. However, the response of the inversion to the range of possible numerical optimization and frequency selections, as well as acquisition geometries, varies widely. Water saturation tends to be the most difficult property to recover in all situations examined. This can be explained with radiation pattern analysis, where very low relative scattering amplitudes from saturation perturbations are observed. An investigation performed with a Bayesian approach illustrates that the introduction of prior information may increase the inversion sensitivity to water saturation


2021 ◽  
Vol 8 ◽  
Author(s):  
Abrar Alabbad ◽  
Jack Dvorkin ◽  
Yazeed Altowairqi ◽  
Zhou F. Duan

A rock physics based seismic interpretation workflow has been developed to extract volumetric rock properties from seismically derived P- and S-wave impedances, Ip and Is. This workflow was first tested on a classic rock physics velocity-porosity model. Next, it was applied to two case studies: a carbonate and a clastic oil field. In each case study, we established rock physics models that accurately relate elastic properties to the rock’s volumetric properties, mainly the total porosity, clay content, and pore fluid. To resolve all three volumetric properties from only two inputs, Ip and Is, a site-specific geology driven relation between the pore fluid and porosity was derived as a hydrocarbon identifier. In order to apply this method at the seismic spatial scale, we created a coarse-scale elastic and volumetric variables by using mathematical upscaling at the wells. By using Ip and Is thus upscaled, we arrived at the accurate interpretation of the upscaled porosity, mineralogy, and water saturation both at the wells and in a simulated vertical impedance section generated by interpolation between the wells.


2017 ◽  
Vol 5 (3) ◽  
pp. SL9-SL23 ◽  
Author(s):  
Humberto S. Arévalo-López ◽  
Jack P. Dvorkin

By using simultaneous impedance inversion, we obtained P- and S-wave impedance ([Formula: see text] and [Formula: see text]) volumes from angle stacks at a siliciclastic turbidite oil reservoir offshore northwest Australia. The ultimate goal was to interpret these elastic variables for fluid, porosity, and mineralogy. This is why an essential part of our workflow was finding the appropriate rock-physics model based on well data. The model-corrected S-wave velocity [Formula: see text] in the wells was used as an input to impedance inversion. The inversion parameters were optimized in small vertical sections around two wells to obtain the best possible match between the seismic impedances and the upscaled impedances measured at the wells. Special attention was paid to the seismically derived [Formula: see text] ratio because we relied on this parameter for hydrocarbon identification. Even after performing crosscorrelation between the angle stacks to correct for two-way traveltime shifts to align the stacks, these stacks did not indicate a coherent amplitude variation with angle (AVA) dependence. To deal with this common problem, we corrected the mid and far stacks by using the near and ultrafar stacks as anchoring points for fitting a [Formula: see text] AVA curve. This choice allowed us to match the seismically derived [Formula: see text] ratio with that predicted by the rock-physics model in the reservoir. Finally, the rock-physics model was used to interpret these [Formula: see text] and [Formula: see text] for the fluid, porosity, and mineralogy. The new paradigm in our inversion/interpretation workflow is that the ultimate quality control of the inversion is in an accurate deterministic match between the seismically derived petrophysical variables and the corresponding upscaled depth curves at the wells. Our interpretation is very sensitive to the inversion results, especially the [Formula: see text] ratio. Despite this fact, we were able to obtain accurate estimates of porosity and clay content in the reservoir and around it.


Geophysics ◽  
2011 ◽  
Vol 76 (1) ◽  
pp. E9-E20 ◽  
Author(s):  
Erling Hugo Jensen ◽  
Charlotte Faust Andersen ◽  
Tor Arne Johansen

We have developed a procedure for estimating the effective elastic properties of various mixtures of smectite and kaolinite over a range of confining pressures, based on the individual effective elastic properties of pure porous smectite and kaolinite. Experimental data for the pure samples are used as input to various rock physics models, and the predictions are compared with experimental data for the mixed samples. We have evaluated three strategies for choosing the initial properties in various rock physics models: (1) input values have the same porosity, (2) input values have the same pressure, and (3) an average of (1) and (2). The best results are obtained when the elastic moduli of the two porous constituents are defined at the same pressure and when their volumetric fractions are adjusted based on different compaction rates with pressure. Furthermore, our strategy makes the modeling results less sensitive to the actual rock physics model. The method can help obtain the elastic properties of mixed unconsolidated clays as a function of mechanical compaction. The more common procedure for estimating effective elastic properties requires knowledge about volume fractions, elastic properties of individual constituents, and geometric details of the composition. However, these data are often uncertain, e.g., large variations in the mineral elastic properties of clays have been reported in the literature, which makes our procedure a viable alternative.


2014 ◽  
Vol 2 (2) ◽  
pp. SE77-SE89 ◽  
Author(s):  
Russell W. Carter ◽  
Kyle T. Spikes ◽  
Thomas Hess

Studying how injected [Formula: see text] affects the seismic response of reservoir rocks is important because it can improve subsurface characterization where [Formula: see text] injection is taking place. This study uses multicomponent data from a 3D vertical seismic profile (VSP) and well logs to model and invert probabilistically for the porosity and [Formula: see text] saturation at the Cranfield reservoir. The well logs were used to calibrate a rock-physics model. Once the accuracy of the model was verified, P-impedance and [Formula: see text]/[Formula: see text] from inverted multicomponent VSP data were used to estimate the porosity and fluid saturation. This inversion generated probabilistic estimates of porosity and fluid saturation for the area of the reservoir sampled by PP- and PS-waves. Inversion results using the measured well log data for calibration indicated that the model was able to estimate porosity with a relatively high degree of accuracy, with the root-mean-square (rms) error being less than 3% for all calibration tests. Pore-fluid composition was estimated, however, with reduced accuracy, with rms errors ranging from 6% to 22% depending on the composition of the calibration fluid. Results from integrating the multicomponent VSP data with the rock-physics model indicated that estimated reservoir porosities are quite close to measured values at an observation well. Pore-fluid composition estimates indicated that this method can differentiate between areas containing [Formula: see text] and those that do not.


Sign in / Sign up

Export Citation Format

Share Document