Three-dimensional geosteering coherence attributes for deep-formation discontinuity detection

Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. O105-O113 ◽  
Author(s):  
Shangxu Wang ◽  
Sanyi Yuan ◽  
Tieyi Wang ◽  
Jianhu Gao ◽  
Shengjun Li

Deep-formation oil/gas exploration is a key objective in the geophysical field, and structural and stratigraphic discontinuities, such as faults and channels, usually contribute to the construction of traps and reservoirs. Coherence has been used successfully to identify these abnormal features in seismic amplitude volumes. However, the current coherence algorithms seldom involve the geologic concept. We propose geosteering coherence attributes by implementing the coherence calculation perpendicular to the direction of the structural trend in a 3D curved plane. We estimate a group of time lags between the original analysis trace and each original neighboring trace along a certain spatial direction by using dip scanning. For each spatial direction, we subsequently construct two new model traces by weighting phase traces derived from the complex seismic traces, in which time lags are eliminated. We then use the new model traces to compute the crosscorrelation coefficients for each spatial direction. We finally obtain the 3D geosteering coherence attributes by taking the minimum values among the modulus of the crosscorrelation coefficients along different spatial directions to approximately characterize the coherence perpendicular to the structural trend in a 3D curved plane. An example of the 3D physical modeling involving fracture groups and faults embedded in the deep formation is used to demonstrate the effectiveness of the 3D geosteering coherence attributes. The applications on two real 3D seismic data sets of sand reservoirs from western deep formation illustrate that our method can alleviate the influence of dipping strata and can highlight subtle structures. Compared to the conventional coherence method, our method can highlight subtle geologic structures more and better, suggesting that it may be serve as a future tool for detecting the distribution of geologic abnormalities in deep exploration.

Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


Author(s):  
Alberto Cavallini ◽  
Davide Del Col ◽  
Luca Doretti ◽  
Luisa Rossetto ◽  
Giovanni Antonio Longo

1993 ◽  
Vol 163 (4) ◽  
pp. 522-534 ◽  
Author(s):  
W. Adams ◽  
R. E. Kendell ◽  
E. H. Hare ◽  
P. Munk-Jørgensen

The epidemiological evidence that the offspring of women exposed to influenza in pregnancy are at increased risk of schizophrenia is conflicting. In an attempt to clarify the issue we explored the relationship between the monthly incidence of influenza (and measles) in the general population and the distribution of birth dates of three large series of schizophrenic patients - 16 960 Scottish patients born in 1932–60; 22 021 English patients born in 1921–60; and 18 723 Danish patients born in 1911–65. Exposure to the 1957 epidemic of A2 influenza in midpregnancy was associated with an increased incidence of schizophrenia, at least in females, in all three data sets. We also confirmed the previous report of a statistically significant long-term relationship between patients' birth dates and outbreaks of influenza in the English series, with time lags of - 2 and - 3 months (the sixth and seventh months of pregnancy). Despite several other negative studies by ourselves and others we conclude that these relationships are probably both genuine and causal; and that maternal influenza during the middle third of intrauterine development, or something closely associated with it, is implicated in the aetiology of some cases of schizophrenia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Albers ◽  
Angelika Svetlove ◽  
Justus Alves ◽  
Alexander Kraupner ◽  
Francesca di Lillo ◽  
...  

AbstractAlthough X-ray based 3D virtual histology is an emerging tool for the analysis of biological tissue, it falls short in terms of specificity when compared to conventional histology. Thus, the aim was to establish a novel approach that combines 3D information provided by microCT with high specificity that only (immuno-)histochemistry can offer. For this purpose, we developed a software frontend, which utilises an elastic transformation technique to accurately co-register various histological and immunohistochemical stainings with free propagation phase contrast synchrotron radiation microCT. We demonstrate that the precision of the overlay of both imaging modalities is significantly improved by performing our elastic registration workflow, as evidenced by calculation of the displacement index. To illustrate the need for an elastic co-registration approach we examined specimens from a mouse model of breast cancer with injected metal-based nanoparticles. Using the elastic transformation pipeline, we were able to co-localise the nanoparticles to specifically stained cells or tissue structures into their three-dimensional anatomical context. Additionally, we performed a semi-automated tissue structure and cell classification. This workflow provides new insights on histopathological analysis by combining CT specific three-dimensional information with cell/tissue specific information provided by classical histology.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2858
Author(s):  
Kelly Ka-Lee Lai ◽  
Timothy Tin-Yan Lee ◽  
Michael Ka-Shing Lee ◽  
Joseph Chi-Ho Hui ◽  
Yong-Ping Zheng

To diagnose scoliosis, the standing radiograph with Cobb’s method is the gold standard for clinical practice. Recently, three-dimensional (3D) ultrasound imaging, which is radiation-free and inexpensive, has been demonstrated to be reliable for the assessment of scoliosis and validated by several groups. A portable 3D ultrasound system for scoliosis assessment is very much demanded, as it can further extend its potential applications for scoliosis screening, diagnosis, monitoring, treatment outcome measurement, and progress prediction. The aim of this study was to investigate the reliability of a newly developed portable 3D ultrasound imaging system, Scolioscan Air, for scoliosis assessment using coronal images it generated. The system was comprised of a handheld probe and tablet PC linking with a USB cable, and the probe further included a palm-sized ultrasound module together with a low-profile optical spatial sensor. A plastic phantom with three different angle structures built-in was used to evaluate the accuracy of measurement by positioning in 10 different orientations. Then, 19 volunteers with scoliosis (13F and 6M; Age: 13.6 ± 3.2 years) with different severity of scoliosis were assessed. Each subject underwent scanning by a commercially available 3D ultrasound imaging system, Scolioscan, and the portable 3D ultrasound imaging system, with the same posture on the same date. The spinal process angles (SPA) were measured in the coronal images formed by both systems and compared with each other. The angle phantom measurement showed the measured angles well agreed with the designed values, 59.7 ± 2.9 vs. 60 degrees, 40.8 ± 1.9 vs. 40 degrees, and 20.9 ± 2.1 vs. 20 degrees. For the subject tests, results demonstrated that there was a very good agreement between the angles obtained by the two systems, with a strong correlation (R2 = 0.78) for the 29 curves measured. The absolute difference between the two data sets was 2.9 ± 1.8 degrees. In addition, there was a small mean difference of 1.2 degrees, and the differences were symmetrically distributed around the mean difference according to the Bland–Altman test. Scolioscan Air was sufficiently comparable to Scolioscan in scoliosis assessment, overcoming the space limitation of Scolioscan and thus providing wider applications. Further studies involving a larger number of subjects are worthwhile to demonstrate its potential clinical values for the management of scoliosis.


2019 ◽  
Vol 93 (12) ◽  
pp. 2651-2660 ◽  
Author(s):  
Sergey Samsonov

AbstractThe previously presented Multidimensional Small Baseline Subset (MSBAS-2D) technique computes two-dimensional (2D), east and vertical, ground deformation time series from two or more ascending and descending Differential Interferometric Synthetic Aperture Radar (DInSAR) data sets by assuming that the contribution of the north deformation component is negligible. DInSAR data sets can be acquired with different temporal and spatial resolutions, viewing geometries and wavelengths. The MSBAS-2D technique has previously been used for mapping deformation due to mining, urban development, carbon sequestration, permafrost aggradation and pingo growth, and volcanic activities. In the case of glacier ice flow, the north deformation component is often too large to be negligible. Historically, the surface-parallel flow (SPF) constraint was used to compute the static three-dimensional (3D) velocity field at various glaciers. A novel MSBAS-3D technique has been developed for computing 3D deformation time series where the SPF constraint is utilized. This technique is used for mapping 3D deformation at the Barnes Ice Cap, Baffin Island, Nunavut, Canada, during January–March 2015, and the MSBAS-2D and MSBAS-3D solutions are compared. The MSBAS-3D technique can be used for studying glacier ice flow at other glaciers and other surface deformation processes with large north deformation component, such as landslides. The software implementation of MSBAS-3D technique can be downloaded from http://insar.ca/.


2012 ◽  
Vol 21 (05) ◽  
pp. 1250048
Author(s):  
L. IORIO

We analytically work out the long-term orbital perturbations induced by the leading order of perturbing potential arising from the local modification of the Newton's inverse square law due to a topology ℝ2 × 𝕊1 with a compactified dimension of radius R recently proposed by Floratos and Leontaris. We neither restrict to any specific spatial direction [Formula: see text] for the asymmetry axis nor to particular orbital configurations of the test particle. Thus, our results are quite general. Nonvanishing long-term variations occur for all the usual osculating Keplerian orbital elements, apart from the semimajor axis which is left unaffected. By using recent improvements in the determination of the orbital motion of Saturn from Cassini data, we preliminarily inferred R ≳ 4-6 kau . As a complementary approach, the putative topological effects should be explicitly modeled and solved-for with a modified version of the ephemerides dynamical models with which the same data sets should be reprocessed.


2015 ◽  
Vol 770 ◽  
pp. 156-188 ◽  
Author(s):  
Patricio Winckler ◽  
Philip L.-F. Liu

A cross-sectionally averaged one-dimensional long-wave model is developed. Three-dimensional equations of motion for inviscid and incompressible fluid are first integrated over a channel cross-section. To express the resulting one-dimensional equations in terms of the cross-sectional-averaged longitudinal velocity and spanwise-averaged free-surface elevation, the characteristic depth and width of the channel cross-section are assumed to be smaller than the typical wavelength, resulting in Boussinesq-type equations. Viscous effects are also considered. The new model is, therefore, adequate for describing weakly nonlinear and weakly dispersive wave propagation along a non-uniform channel with arbitrary cross-section. More specifically, the new model has the following new properties: (i) the arbitrary channel cross-section can be asymmetric with respect to the direction of wave propagation, (ii) the channel cross-section can change appreciably within a wavelength, (iii) the effects of viscosity inside the bottom boundary layer can be considered, and (iv) the three-dimensional flow features can be recovered from the perturbation solutions. Analytical and numerical examples for uniform channels, channels where the cross-sectional geometry changes slowly and channels where the depth and width variation is appreciable within the wavelength scale are discussed to illustrate the validity and capability of the present model. With the consideration of viscous boundary layer effects, the present theory agrees reasonably well with experimental results presented by Chang et al. (J. Fluid Mech., vol. 95, 1979, pp. 401–414) for converging/diverging channels and those of Liu et al. (Coast. Engng, vol. 53, 2006, pp. 181–190) for a uniform channel with a sloping beach. The numerical results for a solitary wave propagating in a channel where the width variation is appreciable within a wavelength are discussed.


2010 ◽  
Vol 57 (2) ◽  
pp. 194-202 ◽  
Author(s):  
Takaaki Uda ◽  
Masumi Serizawa ◽  
Takayuki Kumada ◽  
Kazuya Sakai
Keyword(s):  

Author(s):  
Takafumi Nishino ◽  
Richard H. J. Willden

Recent discoveries on the limiting efficiency of tidal fences are reviewed, followed by a new theoretical investigation into the effect of wake mixing on the efficiency of ‘full’ tidal fences (i.e. turbines arrayed regularly across an entire channel span). The new model is based on the momentum and energy balance equations but includes several unclosed terms, which depend on the actual (three-dimensional) characteristics of turbine near-wake mixing and therefore need to be modelled empirically. The new model agrees well with three-dimensional actuator disk simulations when those unclosed terms are assessed based on the simulations themselves, suggesting that this low-order model could serve as a basis to analyse how various physical factors (such as the design of turbines) affect the limiting efficiency of tidal fences via changes in those terms describing the characteristics of turbine near-wake mixing. Also discussed is the effect of wake mixing on the efficiency of ‘partial’ tidal fences.


Sign in / Sign up

Export Citation Format

Share Document