P-to-S-wave velocity ratio in organic shales

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. MR205-MR222 ◽  
Author(s):  
Sheyore John Omovie ◽  
John P. Castagna

In situ P- and S-wave velocity measurements in a variety of organic-rich shales exhibit P-to-S-wave velocity ratios that are significantly lower than lithologically similar fully brine-saturated shales having low organic content. It has been hypothesized that this drop could be explained by the direct influence of kerogen on the rock frame and/or by the presence of free hydrocarbons in the pore space. The correlation of hydrocarbon saturation with total organic content in situ makes it difficult to separate these possible mechanisms using log data alone. Theoretical bounding equations, using pure kerogen as an end-member component without associated gas, indicate that kerogen reduces the P- and S-wave velocities but does not in general reduce their ratio enough to explain the observed low velocity ratio. The theoretical modeling is consistent with ultrasonic measurements on organic shale core samples that indicate no dependence of velocity ratios on the kerogen volume alone. Sonic log measurements of P- and S-wave velocities in seven organic-rich shale formations deviate significantly (typically more than 5%) from the Greenberg-Castagna empirical brine-saturated shale trend toward lower velocity ratios. In these formations, and on core measurements, Gassmann fluid substitution to 100% brine saturation yields velocity ratios consistent with the Greenberg-Castagna velocity trend for fully brine-saturated shales, despite the high organic content. These sonic and ultrasonic measurements, as well as theoretical modeling, suggest that the velocity ratio reduction in organic shales is best explained by the presence of free hydrocarbons.

2020 ◽  
pp. 1-62 ◽  
Author(s):  
Jamal Ahmadov ◽  
Mehdi Mokhtari

Tuscaloosa Marine Shale (TMS) formation is a clay- and organic-rich emerging shale play with a considerable amount of hydrocarbon resources. Despite the substantial potential, there have been only a few wells drilled and produced in the formation over the recent years. The analyzed TMS samples contain an average of 50 wt% total clay, 27 wt% quartz and 14 wt% calcite and the mineralogy varies considerably over the small intervals. The high amount of clay leads to pronounced anisotropy and the frequent changes in mineralogy result in the heterogeneity of the formation. We studied the compressional (VP) and shear-wave (VS) velocities to evaluate the degree of anisotropy and heterogeneity, which impact hydraulic fracture growth, borehole instabilities, and subsurface imaging. The ultrasonic measurements of P- and S-wave velocities from five TMS wells are the best fit to the linear relationship with R2 = 0.84 in the least-squares criteria. We observed that TMS S-wave velocities are relatively lower when compared to the established velocity relationships. Most of the velocity data in bedding-normal direction lie outside constant VP/VS lines of 1.6–1.8, a region typical of most organic-rich shale plays. For all of the studied TMS samples, the S-wave velocity anisotropy exhibits higher values than P-wave velocity anisotropy. In the samples in which the composition is dominated by either calcite or quartz minerals, mineralogy controls the velocities and VP/VS ratios to a great extent. Additionally, the organic content and maturity account for the velocity behavior in the samples in which the mineralogical composition fails to do so. The results provide further insights into TMS Formation evaluation and contribute to a better understanding of the heterogeneity and anisotropy of the play.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rupeng Ma ◽  
Jing Ba ◽  
José Carcione ◽  
Maxim Lebedev ◽  
Changsheng Wang

The petrophysical properties can be proper indicators to identify oil and gas reservoirs, since the pore fluids have significant effects on the wave response. We have performed ultrasonic measurements on two sets of tight siltstones and dolomites at partial saturation. P- and S-wave velocities are obtained by the pulse transmission technique, while attenuation is calculated using the centroid-frequency shift and spectral-ratio methods. The fluid sensitivities of different properties (i.e., P- and S-wave velocities, impedances and attenuation, Poisson's ratio, density, and their combinations) are quantitatively analyzed by considering the data distribution, based on the crossplot technique. The result shows that the properties (P- to S-wave velocity and attenuation ratios, Poisson's ratio, and first to second Lamé constant ratio) with high fluid-sensitivity indicators successfully distinguish gas from oil and water, unlike oil from water. Moreover, siltstones and dolomites can be identified on the basis of data distribution areas. Ultrasonic rock-physics templates of the P- to S-wave velocity ratio vs. the product of first Lamé constant with density obtained with a poroelastic model, considering the structural heterogeneity and patchy saturation, are used to predict the saturation and porosity, which are in good agreement with the experimental data at different porosity ranges.


2015 ◽  
Vol 8 (1) ◽  
pp. 142-152 ◽  
Author(s):  
Zhidi Liu ◽  
Jingzhou Zhao

In this paper, experiments are carried out under different pressures and water saturations using core samples of volcanic rocks from the Junggar Basin in China to understand how water saturation affects P- and S-wave velocities. The results show that water saturated rocks exhibit significantly higher P- and S-wave velocities than gas saturated rocks. In addition, the P- and S-wave velocity ratio declines with increasing water saturation. Furthermore, a P- and S-wave velocity ratio vs. resistivity cross plot is created to identify gas reservoirs in the volcanic rocks in the Junggar Basin.


Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Gary Mavko ◽  
Diane Jizba

Seismic velocity dispersionin fluid-saturated rocks appears to be dominated by tow mecahnisms: the large scale mechanism modeled by Biot, and the local flow or squirt mecahnism. The tow mechanisms can be distuinguished by the ratio of P-to S-wave dispersions, or more conbeniently, by the ratio of dynamic bulk to shear compliance dispersions derived from the wave velocities. Our formulation suggests that when local flow denominates, the dispersion of the shear compliance will be approximately 4/15 the dispersion of the compressibility. When the Biot mechanism dominates, the constant of proportionality is much smaller. Our examination of ultrasonic velocities from 40 sandstones and granites shows that most, but not all, of the samples were dominated by local flow dispersion, particularly at effective pressures below 40 MPa.


2020 ◽  
Author(s):  
Jerome Fortin ◽  
Cedric Bailly ◽  
Mathilde Adelinet ◽  
Youri Hamon

<p>Linking ultrasonic measurements made on samples, with sonic logs and seismic subsurface data, is a key challenge for the understanding of carbonate reservoirs. To deal with this problem, we investigate the elastic properties of dry lacustrine carbonates. At one study site, we perform a seismic refraction survey (100 Hz), as well as sonic (54 kHz) and ultrasonic (250 kHz) measurements directly on outcrop and ultrasonic measurements on samples (500 kHz). By comparing the median of each data set, we show that the P wave velocity decreases from laboratory to seismic scale. Nevertheless, the median of the sonic measurements acquired on outcrop surfaces seems to fit with the seismic data, meaning that sonic acquisition may be representative of seismic scale. To explain the variations due to upscaling, we relate the concept of representative elementary volume with the wavelength of each scale of study. Indeed, with upscaling, the wavelength varies from millimetric to pluri-metric. This change of scale allows us to conclude that the behavior of P wave velocity is due to different geological features (matrix porosity, cracks, and fractures) related to the different wavelengths used. Based on effective medium theory, we quantify the pore aspect ratio at sample scale and the crack/fracture density at outcrop and seismic scales using a multiscale representative elementary volume concept. Results show that the matrix porosity that controls the ultrasonic P wave velocities is progressively lost with upscaling, implying that crack and fracture porosity impacts sonic and seismic P wave velocities, a result of paramount importance for seismic interpretation based on deterministic approaches.</p><p>Bailly, C., Fortin, J., Adelinet, M., & Hamon, Y. (2019). Upscaling of elastic properties in carbonates: A modeling approach based on a multiscale geophysical data set. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2019JB018391</p>


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 337
Author(s):  
Hanane Sghiouri El Idrissi ◽  
Abderrahim Samaouali ◽  
Younes El Rhaffari ◽  
Salah El Alami ◽  
Yves Geraud

In this work, we study the variability of the lithological composition and organic matter content of samples were taken from the different layers M, X and Y of the Timahdit oil shale in Morocco, in order to experimentally analyze the impact of this variability on petrophysical measurements. The objective of this study is to predict the properties of the layers, including their thermal conductivity, thermal diffusivity, porosity and P and S wave velocities. The results of the study of the impact of the organic matter content of the samples on the petrophysical measurements show that, regardless of the organic matter content, thermal conductivity and diffusivity remain insensitive, while P and S wave velocities decrease linearly and porosity increases with increasing organic matter content. On the other hand, the study of the organic matter variability content is consistent with the velocity ratio, so can be used as an organic matter indicator of the layers. Conductivity and thermal diffusivity are almost invariant to the variability of the organic matter.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. KS11-KS22 ◽  
Author(s):  
Nicola Piana Agostinetti ◽  
Alberto Malinverno

We use teleseismic P-to-S converted waves from a permanent station to estimate the uncertainties in a 1D elastic model of the shallow crust (0–7 km depth) obtained from the inversion of receiver function (RF) data. Our earth model consists of layers with a constant S-wave velocity [Formula: see text] and P- to S-wave velocity ratio ([Formula: see text]). We apply a Bayesian formulation and transdimensional Monte Carlo sampling to compute the posterior uncertainties of the earth model. The model uncertainties rely on a realistic representation of the data uncertainties, and we estimate directly from the stacking of the teleseismic data, a full-error covariance matrix. To explore the effect of the number of teleseismic events and the RF frequency content, we compare the results of inverting a single RF computed for a cut-off filter frequency of 4 Hz with the joint inversion of four RFs computed from independent ensembles in a larger pool of events for cut-off frequencies of 0.5, 1, 2, and 4 Hz. The inversion results are compared with the lithostratigraphy and sonic-log measurements from a 7 km deep borehole drilled near the seismic station. The inversion of a single RF results in larger uncertainties in the recovered [Formula: see text] profile and in the depth to seismic discontinuities compared with the multifrequency inversion. Moreover, the multifrequency inversion predicts more accurately the depth to a velocity inversion at approximately 6 km below the surface and matches more closely the borehole sonic-log data. Our results indicate that RF data can be used to map shallow (3–5 km depth) crustal interfaces with uncertainties in the order of 300–500 m, whereas uncertainties are consistently smaller (<300 m) for interfaces in the top kilometer.


Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 440-459 ◽  
Author(s):  
Ranajit Ghose ◽  
Jeroen Goudswaard

A cone penetration test (CPT) is the most common geotechnical testing method used to estimate in situ the strength properties of soil. Although CPT provides valuable information, this information is restricted to the location of the measurement. We propose a new concept to integrate shallow S‐wave reflection seismic data with CPT data in order to obtain laterally continuous subsoil information. In this vein, a valid quantitative means to relate seismic reflections to CPT data is a primary requirement. The approach proposed here is based on the characterization of the scaling behavior of the local fine‐scale S‐wave velocity information extracted from the seismic reflection data and the same behavior of the CPT cone resistance. The local velocity contrast information is extracted by linearized Zoeppritz inversion of the amplitude‐preserved prestack reflection data. We have formulated a multiscale analysis approach employing the continuous wavelet transform in order to quantitatively characterize the nature of change at an interface of the local S‐wave velocity contrast and the CPT cone resistance and to illuminate any relation between these two. The multiscale analysis estimates the singularity parameter α, which indicates the nature of the interfacial change. The application of our method to the field data has uncovered a striking relation between the nature of variation of the local S‐wave velocity contrast and that of CPT cone resistance; otherwise, such a relation was not visible. Detailed analyses of two extensive field datasets have shown that the lateral fine‐scale variation of soil strength, as seen by CPT cone resistance, has a close resemblance with the variation of the local S‐wave velocity function as seen by angle‐dependent reflection measurements. This leads to a unique possibility to integrate two very different in‐situ measurements—reflection seismic and CPT—providing laterally continuous detailed information of the soil layer boundaries.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. E59-E68 ◽  
Author(s):  
Hua Wang ◽  
Guo Tao

Propagating wavefields from monopole, dipole, and quadrupole acoustic logging-while-drilling (LWD) tools in very slow formations have been studied using the discrete wavenumber integration method. These studies examine the responses of monopole and dipole systems at different source frequencies in a very slow surrounding formation, and the responses of a quadrupole system operating at a low source frequency in a slow formation with different S-wave velocities. Analyses are conducted of coherence-velocity/slowness relationships (semblance spectra) in the time domain and of the dispersion characteristics of these waveform signals from acoustic LWD array receivers. These analyses demonstrate that, if the acoustic LWD tool is centralized properly and is operating at low frequencies (below 3 kHz), a monopole system can measure P-wave velocity by means of a “leaky” P-wave for very slow formations. Also, for very slow formations a dipole system can measure the P-wave velocity via a leaky P-wave and can measure the S-wave velocity from a formation flexural wave. With a quadrupole system, however, the lower frequency limit (cutoff frequency) of the drill-collar interference wave would decrease to 5 kHz and might no longer be neglected if the surrounding formation becomes a very slow formation, with S-wave velocities at approximately 500 m/s.


Sign in / Sign up

Export Citation Format

Share Document