On parameterization in monoclinic media with a horizontal symmetry plane

Geophysics ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. C37-C49
Author(s):  
Alexey Stovas

I have derived accurate anisotropy parameters for a monoclinic anisotropy model with a horizontal symmetry plane based on normal moveout (NMO) ellipses for P-, S1-, S2-, and converted waves. The NMO velocity ellipse is also defined for all types of converted waves. The parameters are defined in the phase domain and compared with existing approximate monoclinic anisotropy parameters. These parameters are evaluated for two benchmark models consisting of two nonorthogonal fracture sets embedded into a transversely isotropic medium with a vertical symmetry axis. The dependence of monoclinic parameters on the azimuth angle between the fracture sets is analyzed. Being linearized with respect to fracture weaknesses, the monoclinic anisotropy parameters can be decomposed into sine functions of double and quartic azimuth angle between the fracture sets with the weights given by the stiffness coefficients of the background model. The discrimination between the fracture parameters computed from a given set of monoclinic parameters is dependent on the background model and controlled by the azimuth angle between the fracture sets.

Geophysics ◽  
2021 ◽  
pp. 1-78
Author(s):  
Da Shuai ◽  
Alexey Stovas ◽  
Jianxin Wei ◽  
Bangrang Di ◽  
Yang Zhao

The linear slip theory is gradually being used to characterize seismic anisotropy. If the transversely isotropic medium embeds vertical fractures (VFTI medium), the effective medium becomes orthorhombic. The vertical fractures, in reality, may exist in any azimuth angle which leads the effective medium to be monoclinic. We apply the linear slip theory to create a monoclinic medium by only introducing three more physical meaning parameters: the fracture preferred azimuth angle, the fracture azimuth angle, and the angular standard deviation. First, we summarize the effective compliance of a rock as the sum of the background matrix compliance and the fracture excess compliance. Then, we apply the Bond transformation to rotate the fractures to be azimuth dependent, introduce a Gaussian function to describe the fractures' azimuth distribution assuming that the fractures are statistically distributed around the preferred azimuth angle, and average each fracture excess compliance over azimuth. The numerical examples investigate the influence of the fracture azimuth distribution domain and angular standard deviation on the effective stiffness coefficients, elastic wave velocities, and anisotropy parameters. Our results show that the fracture cluster parameters have a significant influence on the elastic wave velocities. The fracture azimuth distribution domain and angular standard deviation have a bigger influence on the orthorhombic anisotropy parameters in the ( x2, x3) plane than that in the ( x1, x3) plane. The fracture azimuth distribution domain and angular standard deviation have little influence on the monoclinic anisotropy parameters responsible for the P-wave NMO ellipse and have a significant influence on the monoclinic anisotropy parameters responsible for the S1- and S2-wave NMO ellipse. The effective monoclinic can be degenerated into the VFTI medium.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. R157-R171 ◽  
Author(s):  
Nabil Masmoudi ◽  
Tariq Alkhalifah

Orthorhombic anisotropic model inversion is extra challenging because of the multiple parameter nature of the inversion problem. The high number of parameters required to describe the medium exerts considerable trade-off and additional nonlinearity to a full-waveform inversion (FWI) application. Choosing a suitable set of parameters to describe the model and designing an effective inversion strategy can help in mitigating this problem. Using the Born approximation, which is the central ingredient of the FWI update process, we have derived radiation patterns for the different acoustic orthorhombic parameterizations. Analyzing the angular dependence of scattering (radiation patterns) of the parameters of different parameterizations starting with the often used Thomsen-Tsvankin parameterization, we have assessed the potential trade-off between the parameters and the resolution in describing the data and inverting for the parameters. The analysis led us to introduce new parameters [Formula: see text], [Formula: see text], and [Formula: see text], which have azimuthally dependent radiation patterns, but keep the scattering potential of the transversely isotropic parameters stationary with azimuth (azimuth independent). The novel parameters [Formula: see text], [Formula: see text], and [Formula: see text] are dimensionless and represent a measure of deviation between the vertical planes in orthorhombic anisotropy. Therefore, these deviation parameters offer a new parameterization style for an acoustic orthorhombic medium described by six parameters: three vertical transversely isotropic (VTI) parameters, two deviation parameters, and one parameter describing the anisotropy in the horizontal symmetry plane. The main feature of any parameterization based on the deviation parameters, is the azimuthal independency of the modeled data with respect to the VTI parameters, which allowed us to propose practical inversion strategies based on our experience with the VTI parameters. This feature of the new parameterization style holds for even the long-wavelength components of the model constrained by traveltimes.


2012 ◽  
Vol 190 (2) ◽  
pp. 1197-1203 ◽  
Author(s):  
Dariush Nadri ◽  
Joël Sarout ◽  
Andrej Bóna ◽  
David Dewhurst

Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. C37-C42 ◽  
Author(s):  
Alexey Stovas ◽  
Tariq Alkhalifah

In a transversely isotropic (TI) medium, the trade-off between inhomogeneity and anisotropy can dramatically reduce our capability to estimate anisotropy parameters. By expanding the TI eikonal equation in power series in terms of the aneliptic parameter [Formula: see text], we derive an efficient tool to estimate (scan) for [Formula: see text] in a generally inhomogeneous, elliptically anisotropic background medium. For a homogeneous-tilted transversely isotropic medium, we obtain an analytic nonhyperbolic moveout equation that is accurate for large offsets. In the common case where we do not have well information and it is necessary to resolve the vertical velocity, the background medium can be assumed isotropic, and the traveltime equations becomes simpler. In all cases, the accuracy of this new TI traveltime equation exceeds previously published formulations and demonstrates how [Formula: see text] is better resolved at small offsets when the tilt is large.


1969 ◽  
Vol 59 (1) ◽  
pp. 59-72
Author(s):  
Robert S. Crosson ◽  
Nikolas I. Christensen

Abstract Several recent investigations suggest that portions of the Earth's upper mantle behave anisotropically to seismic wave propagation. Since several types of anisotropy can produce azimuthal variations in Pn velocities, it is of particular geophysical interest to provide a framework for the recognition of the form or forms of anisotropy most likely to be manifest in the upper mantle. In this paper upper mantle material is assumed to possess the elastic properties of transversely isotropic media. Equations are presented which relate azimuthal variations in Pn velocities to the direction and angle of tilt of the symmetry axis of a transversely isotropic upper mantle. It is shown that the velocity data of Raitt and Shor taken near the Mendocino and Molokai fracture zones can be adequately explained by the assumption of transverse isotropy with a nearly horizontal symmetry axis.


Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. T51-T62 ◽  
Author(s):  
Qi Hao ◽  
Alexey Stovas ◽  
Tariq Alkhalifah

Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. T191-T207
Author(s):  
Xingguo Huang ◽  
Hui Sun ◽  
Zhangqing Sun ◽  
Nuno Vieira da Silva

The complex traveltime solutions of the complex eikonal equation are the basis of inhomogeneous plane-wave seismic imaging methods, such as Gaussian beam migration and tomography. We have developed analytic approximations for the complex traveltime in transversely isotropic media with a titled symmetry axis, which is defined by a Taylor series expansion over the anisotropy parameters. The formulation for the complex traveltime is developed using perturbation theory and the complex point-source method. The real part of the complex traveltime describes the wavefront, and the imaginary part of the complex traveltime describes the decay of the amplitude of waves away from the central ray. We derive the linearized ordinary differential equations for the coefficients of the Taylor-series expansion using perturbation theory. The analytical solutions for the complex traveltimes are determined by applying the complex point-source method to the background traveltime formula and subsequently obtaining the coefficients from the linearized ordinary differential equations. We investigate the influence of the anisotropy parameters and of the initial width of the ray tube on the accuracy of the computed traveltimes. The analytical formulas, as outlined, are efficient methods for the computation of complex traveltimes from the complex eikonal equation. In addition, those formulas are also effective methods for benchmarking approximated solutions.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. MR195-MR203
Author(s):  
Fuyong Yan ◽  
Lev Vernik ◽  
De-Hua Han

Studying the empirical relations between seismic anisotropy parameters is important for the simplification and practical applications of seismic anisotropy. The elastic properties of mudrocks are often described by transverse isotropy. Knowing the elastic properties in the vertical and horizontal directions, a sole oblique anisotropy parameter determines the pattern of variation of the elastic properties of a transversely isotropic (TI) medium in all of the other directions. The oblique seismic anisotropy parameter [Formula: see text], which determines seismic reflection moveout behavior, is important in anisotropic seismic data processing and interpretation. Compared to the other anisotropy parameters, the oblique anisotropy parameter is more sensitive to the measurement error. Although, theoretically, only one oblique velocity is needed to determine the oblique anisotropy parameter, the uncertainty can be greatly reduced if multiple oblique velocities in different directions are measured. If a mudrock is not a perfect TI medium but it is expediently treated as one, then multiple oblique velocity measurements in different directions should lead to a more representative approximation of [Formula: see text] or [Formula: see text] because the directional bias can be reduced. Based on a data quality analysis of the laboratory seismic anisotropy measurement data from the literature, we found that there are strong correlations between the oblique anisotropy parameter and the principal anisotropy parameters when data points of more uncertainty are excluded. Examples of potential applications of these empirical relations are discussed.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. C143-C157 ◽  
Author(s):  
Song Jin ◽  
Alexey Stovas

Seismic wave reflection and transmission (R/T) responses characterize the subsurface local property, and the widely spread anisotropy has considerable influences even at small incident angles. We have considered layered transversely isotropic media with horizontal symmetry axes (HTI), and the symmetry axes were not restricted to be aligned. With the assumption of weak contrast across the interface, linear approximations for R/T coefficients normalized by vertical energy flux are derived based on a simple layered HTI model. We also obtain the approximation with the isotropic background medium under an additional weak anisotropy assumption. Numerical tests illustrate the good accuracy of the approximations compared with the exact results.


Sign in / Sign up

Export Citation Format

Share Document