Predictive coherence

2015 ◽  
Vol 3 (4) ◽  
pp. SAE1-SAE7 ◽  
Author(s):  
Parvaneh Karimi ◽  
Sergey Fomel ◽  
Lesli Wood ◽  
Dallas Dunlap

Detection and interpretation of fault systems and stratigraphic features and the relationship between them are crucial for seismic interpretation and reservoir characterization. To provide better interpretation insight and to be able to extract overlooked features out of seismic data volumes, we have developed a new attribute that detects faults and other discontinuities while handling local nonstationary variations across them. First, we used predictive painting to form a structural prediction of seismic events from neighboring traces (left and right neighboring traces in 2D and neighboring traces in all directions around a reference trace in 3D) according to the local structural slopes. Then, we computed prediction residuals by subtracting each prediction from the original data, and we found the smallest prediction-error interval for each point that best represented discontinuity information at that point. The extracted fault information changed with location (spatially and temporally), and it was nonstationary. Conventional coherence measures operate on a spatial window of neighboring traces and a temporal (vertical) analysis window of samples above and below the analysis point, and they can hardly cope with nonstationarity in fault information. In contrast, in our method, neither temporal nor spatial windows were involved in coherence computation, which allowed us to honor nonstationary changes of fault information and to achieve high resolution in the vertical and lateral directions. To assess the performance of the proposed attribute, we compared it with the conventional coherence attribute over the same data set. The comparison demonstrated the effectiveness of discontinuity detection using predictive coherence and showed its value in extracting additional information from seismic data.

Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. V407-V414
Author(s):  
Yanghua Wang ◽  
Xiwu Liu ◽  
Fengxia Gao ◽  
Ying Rao

The 3D seismic data in the prestack domain are contaminated by impulse noise. We have adopted a robust vector median filter (VMF) for attenuating the impulse noise from 3D seismic data cubes. The proposed filter has two attractive features. First, it is robust; the vector median that is the output of the filter not only has a minimum distance to all input data vectors, but it also has a high similarity to the original data vector. Second, it is structure adaptive; the filter is implemented following the local structure of coherent seismic events. The application of the robust and structure-adaptive VMF is demonstrated using an example data set acquired from an area with strong sedimentary rhythmites composed of steep-dipping thin layers. This robust filter significantly improves the signal-to-noise ratio of seismic data while preserving any discontinuity of reflections and maintaining the fidelity of amplitudes, which will facilitate the reservoir characterization that follows.


Geophysics ◽  
2021 ◽  
pp. 1-97
Author(s):  
Dawei Liu ◽  
Lei Gao ◽  
Xiaokai Wang ◽  
wenchao Chen

Acquisition footprint causes serious interference with seismic attribute analysis, which severely hinders accurate reservoir characterization. Therefore, acquisition footprint suppression has become increasingly important in industry and academia. In this work, we assume that the time slice of 3D post-stack migration seismic data mainly comprises two components, i.e., useful signals and acquisition footprint. Useful signals describe the spatial distributions of geological structures with local piecewise smooth morphological features. However, acquisition footprint often behaves as periodic artifacts in the time-slice domain. In particular, the local morphological features of the acquisition footprint in the marine seismic acquisition appear as stripes. As useful signals and acquisition footprint have different morphological features, we can train an adaptive dictionary and divide the atoms of the dictionary into two sub-dictionaries to reconstruct these two components. We propose an adaptive dictionary learning method for acquisition footprint suppression in the time slice of 3D post-stack migration seismic data. To obtain an adaptive dictionary, we use the K-singular value decomposition algorithm to sparsely represent the patches in the time slice of 3D post-stack migration seismic data. Each atom of the trained dictionary represents certain local morphological features of the time slice. According to the difference in the variation level between the horizontal and vertical directions, the atoms of the trained dictionary are divided into two types. One type significantly represents the local morphological features of the acquisition footprint, whereas the other type represents the local morphological features of useful signals. Then, these two components are reconstructed using morphological component analysis based on different types of atoms, respectively. Synthetic and field data examples indicate that the proposed method can effectively suppress the acquisition footprint with fidelity to the original data.


2021 ◽  
Vol 73 (02) ◽  
pp. 68-69
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 200577, “Applications of Artificial Neural Networks for Seismic Facies Classification: A Case Study From the Mid-Cretaceous Reservoir in a Supergiant Oil Field,” by Ali Al-Ali, Karl Stephen, SPE, and Asghar Shams, Heriot-Watt University, prepared for the 2020 SPE Europec featured at the 82nd EAGE Conference and Exhibition, originally scheduled to be held in Amsterdam, 1-3 December. The paper has not been peer reviewed. Facies classification using data from sources such as wells and outcrops cannot capture all reservoir characterization in the interwell region. Therefore, as an alternative approach, seismic facies classification schemes are applied to reduce the uncertainties in the reservoir model. In this study, a machine-learning neural network was introduced to predict the lithology required for building a full-field Earth model for carbonate reservoirs in southern Iraq. The work and the methodology provide a significant improvement in facies classification and reveal the capability of a probabilistic neural network technique. Introduction The use of machine learning in seismic facies classification has increased gradually during the past decade in the interpretation of 3D and 4D seismic volumes and reservoir characterization work flows. The complete paper provides a literature review regarding this topic. Previously, seismic reservoir characterization has revealed the heterogeneity of the Mishrif reservoir and its distribution in terms of the pore system and the structural model. However, the main objective of this work is to classify and predict the heterogeneous facies of the carbonate Mishrif reservoir in a giant oil field using a multilayer feed-forward network (MLFN) and a probabilistic neural network (PNN) in nonlinear facies classification techniques. A related objective was to find any domain-specific causal relationships among input and output variables. These two methods have been applied to classify and predict the presence of different facies in Mishrif reservoir rock types. Case Study Reservoir and Data Set Description. The West Qurna field is a giant, multibillion-barrel oil field in the southern Mesopotamian Basin with multiple carbonate and clastic reservoirs. The overall structure of the field is a north/south trending anticline steep on the western flank and gentle on the eastern flank. Many producing reservoirs developed in this oil field; however, the Mid- Cretaceous Mishrif reservoir is the main producing reservoir. The reservoir consists of thick carbonate strata (roughly 250 m) deposited on a shallow water platform adjacent to more-distal, deeper-water nonreservoir carbonate facies developing into three stratigraphic sequence units in the second order. Mishrif facies are characterized by a porosity greater than 20% and large permeability contrast from grainstones to microporosity (10-1000 md). The first full-field 3D seismic data set was achieved over 500 km2 during 2012 and 2013 in order to plan the development of all field reservoirs. A de-tailed description of the reservoir has been determined from well logs and core and seismic data. This study is mainly based on facies log (22 wells) and high-resolution 3D seismic volume to generate seismic attributes as the input data for the training of the neural network model. The model is used to evaluate lithofacies in wells without core data but with appropriate facies logs. Also, testing was carried out in parallel with the core data to verify the results of facies classification.


2012 ◽  
Vol 20 (3) ◽  
pp. 329-350 ◽  
Author(s):  
Tom S. Clark ◽  
Benjamin E. Lauderdale

Many theories of judicial politics have at their core the concepts of legal significance, doctrinal development and evolution, and the dynamics of precedent. Despite rigorous theoretical conceptualization, these concepts remain empirically elusive. We propose the use of a genealogical model (or “family tree”) to describe the Court's construction of precedent over time. We describe statistical assumptions that allow us to estimate this kind of structure using an original data set of citation counts between Supreme Court majority opinions. The genealogical model of doctrinal development provides a parsimonious description of the dependencies between opinions, while generating measures of legal significance and other related quantities. We employ these measures to evaluate the robustness of a recent finding concerning the relationship between ideological homogeneity within majority coalitions and the legal impact of Court decisions.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. V47-V54 ◽  
Author(s):  
Roberto H. Herrera ◽  
Mirko van der Baan

We evaluated a semiautomatic method for well-to-seismic tying to improve correlation results and reproducibility of the procedure. In the manual procedure, the interpreter first creates a synthetic trace from edited well logs, determines the most appropriate bulk time shift and polarity, and then applies a minimum amount of stretching and squeezing to best match the observed data. The last step resembles a visual pattern recognition task, which often requires some experience. We replaced the last step with a constrained dynamic time-warping technique, to help guide the interpreter. The method automatically determined the appropriate amount of local stretching and squeezing to produce the highest correlation between the original data and the created synthetic trace. The constraint ensured that stretching and squeezing were kept within reasonable bounds, as determined by the interpreter. Results compared well with the manual method, leading to ties along the entire trace length in contrast to the shorter analysis window in the conventional method. Yet, we advise against unsupervised applications because the method is intended as a guide instead of a fully automated blind approach.


2020 ◽  
pp. 147892992096578
Author(s):  
Dan Ziebarth

A significant amount of literature has inspected the relationship between public–private partnerships and state and local government. This literature has focused primarily on how these agreements shape financing, economic development, and public policy measures. There is little research, however, on how improvement districts may affect political participation. There are many reasons to believe that these districts may raise levels of political participation, as they deeply affect state and local politics and shape the socioeconomic development of local communities. This article fills this gap in the literature by exploring the relationship between the establishment of local improvement districts and voter participation rates. An original data set is constructed from 18 state assembly districts and 22 local improvement districts in New York City across nine elections between 2002 and 2018, resulting in 198 unique observations across time. Empirical results reflect how the development of improvement districts can serve as signals for rising political participation in surrounding areas, marked by increasing rates of voter turnout across midterm and presidential-year election cycles. These findings are compelling, providing insight into how local organizations designed and sustained through issue ownership and community collaboration have the ability to raise political participation through electoral activity.


2020 ◽  
Vol 8 (4) ◽  
pp. T1057-T1069
Author(s):  
Ritesh Kumar Sharma ◽  
Satinder Chopra ◽  
Larry Lines

The discrimination of fluid content and lithology in a reservoir is important because it has a bearing on reservoir development and its management. Among other things, rock-physics analysis is usually carried out to distinguish between the lithology and fluid components of a reservoir by way of estimating the volume of clay, water saturation, and porosity using seismic data. Although these rock-physics parameters are easy to compute for conventional plays, there are many uncertainties in their estimation for unconventional plays, especially where multiple zones need to be characterized simultaneously. We have evaluated such uncertainties with reference to a data set from the Delaware Basin where the Bone Spring, Wolfcamp, Barnett, and Mississippian Formations are the prospective zones. Attempts at seismic reservoir characterization of these formations have been developed in Part 1 of this paper, where the geologic background of the area of study, the preconditioning of prestack seismic data, well-log correlation, accounting for the temporal and lateral variation in the seismic wavelets, and building of robust low-frequency model for prestack simultaneous impedance inversion were determined. We determine the challenges and the uncertainty in the characterization of the Bone Spring, Wolfcamp, Barnett, and Mississippian sections and explain how we overcame those. In the light of these uncertainties, we decide that any deterministic approach for characterization of the target formations of interest may not be appropriate and we build a case for adopting a robust statistical approach. Making use of neutron porosity and density porosity well-log data in the formations of interest, we determine how the type of shale, volume of shale, effective porosity, and lithoclassification can be carried out. Using the available log data, multimineral analysis was also carried out using a nonlinear optimization approach, which lent support to our facies classification. We then extend this exercise to derived seismic attributes for determination of the lithofacies volumes and their probabilities, together with their correlations with the facies information derived from mud log data.


2020 ◽  
Vol 39 (10) ◽  
pp. 727-733
Author(s):  
Haibin Di ◽  
Leigh Truelove ◽  
Cen Li ◽  
Aria Abubakar

Accurate mapping of structural faults and stratigraphic sequences is essential to the success of subsurface interpretation, geologic modeling, reservoir characterization, stress history analysis, and resource recovery estimation. In the past decades, manual interpretation assisted by computational tools — i.e., seismic attribute analysis — has been commonly used to deliver the most reliable seismic interpretation. Because of the dramatic increase in seismic data size, the efficiency of this process is challenged. The process has also become overly time-intensive and subject to bias from seismic interpreters. In this study, we implement deep convolutional neural networks (CNNs) for automating the interpretation of faults and stratigraphies on the Opunake-3D seismic data set over the Taranaki Basin of New Zealand. In general, both the fault and stratigraphy interpretation are formulated as problems of image segmentation, and each workflow integrates two deep CNNs. Their specific implementation varies in the following three aspects. First, the fault detection is binary, whereas the stratigraphy interpretation targets multiple classes depending on the sequences of interest to seismic interpreters. Second, while the fault CNN utilizes only the seismic amplitude for its learning, the stratigraphy CNN additionally utilizes the fault probability to serve as a structural constraint on the near-fault zones. Third and more innovatively, for enhancing the lateral consistency and reducing artifacts of machine prediction, the fault workflow incorporates a component of horizontal fault grouping, while the stratigraphy workflow incorporates a component of feature self-learning of a seismic data set. With seven of 765 inlines and 23 of 2233 crosslines manually annotated, which is only about 1% of the available seismic data, the fault and four sequences are well interpreted throughout the entire seismic survey. The results not only match the seismic images, but more importantly they support the graben structure as documented in the Taranaki Basin.


2010 ◽  
Vol 1 (4) ◽  
pp. 69-79 ◽  
Author(s):  
David Castillo-Merino ◽  
Dolors Plana-Erta

This paper investigates the constraints for companies to innovate in order to be competitive in the knowledge society. Using a large and original data set of Catalan firms, the authors have conducted a micro econometric analysis following Henry et al.’s (1999) investment model and von Kalckreuth (2004) methodology empirically contrasting the relationship between firms’ investment spread over time and their financial structure. Results show that it exits a positive and significant relationship between firms’ investment shift and financial structure, emerging financial constraints for more innovative firms. Furthermore, these constraints are higher for micro companies and firms within the knowledge-advanced services’ industry. Finally, the authors find that advanced ICT uses by more innovative firms allow them to reduce constraints of access to sources of finance.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. R1-R10 ◽  
Author(s):  
Helene Hafslund Veire ◽  
Martin Landrø

Elastic parameters derived from seismic data are valuable input for reservoir characterization because they can be related to lithology and fluid content of the reservoir through empirical relationships. The relationship between physical properties of rocks and fluids and P-wave seismic data is nonunique. This leads to large uncertainties in reservoir models derived from P-wave seismic data. Because S- waves do not propagate through fluids, the combined use of P-and S-wave seismic data might increase our ability to derive fluid and lithology effects from seismic data, reducing the uncertainty in reservoir characterization and thereby improving 3D reservoir model-building. We present a joint inversion method for PP and PS seismic data by solving approximated linear expressions of PP and PS reflection coefficients simultaneously using a least-squares estimation algorithm. The resulting system of equations is solved by singular-value decomposition (SVD). By combining the two independent measurements (PP and PS seismic data), we stabilize the system of equations for PP and PS seismic data separately, leading to more robust parameter estimation. The method does not require any knowledge of PP and PS wavelets. We tested the stability of this joint inversion method on a 1D synthetic data set. We also applied the methodology to North Sea multicomponent field data to identify sand layers in a shallow formation. The identified sand layers from our inverted sections are consistent with observations from nearby well logs.


Sign in / Sign up

Export Citation Format

Share Document