A new workflow to improve the carbonate reservoir types discrimination combing the empirical model decomposition and energy entropy classification methods

2018 ◽  
Vol 6 (3) ◽  
pp. T555-T567
Author(s):  
Zhuoying Fan ◽  
Jiagen Hou ◽  
Chengyan Lin ◽  
Xinmin Ge

Classification and well-logging evaluation of carbonate reservoir rock is very difficult. On one side, there are many reservoir pore spaces developed in carbonate reservoirs, including large karst caves, dissolved pores, fractures, intergranular dissolved pores, intragranular dissolved pores, and micropores. On the other side, conventional well-logging response characteristics of the various pore systems can be similar, making it difficult to identify the type of pore systems. We have developed a new reservoir rock-type characterization workflow. First, outcrop observations, cores, well logs, and multiscale data were used to clarify the carbonate reservoir types in the Ordovician carbonates of the Tahe Oilfield. Three reservoir rock types were divided based on outcrop, core observation, and thin section analysis. Microscopic and macroscopic characteristics of various rock types and their corresponding well-log responses were evaluated. Second, conventional well-log data were decomposed into multiple band sets of intrinsic mode functions using empirical mode decomposition method. The energy entropy of each log curve was then investigated. Based on the decomposition results, the characteristics of each reservoir type were summarized. Finally, by using the Fisher discriminant, the rock types of the carbonate reservoirs could be identified reliably. Comparing with conventional rock type identification methods based on conventional well-log responses only, the new workflow proposed in this paper can effectively cluster data within each rock types and increase the accuracy of reservoir type-based hydrocarbon production prediction. The workflow was applied to 213 reservoir intervals from 146 wells in the Tahe Oilfield. The results can improve the accuracy of oil-production interval prediction using well logs over conventional methods.

2021 ◽  
Author(s):  
Anton Georgievich Voskresenskiy ◽  
Nikita Vladimirovich Bukhanov ◽  
Maria Alexandrovna Kuntsevich ◽  
Oksana Anatolievna Popova ◽  
Alexey Sergeevich Goncharov

Abstract We propose a methodology to improve rock type classification using machine learning (ML) techniques and to reveal causal inferences between reservoir quality and well log measurements. Rock type classification is an essential step in accurate reservoir modeling and forecasting. Machine learning approaches allow to automate rock type classification based on different well logs and core data. In order to choose the best model which does not progradate uncertainty further into the workflow it is important to interpret machine learning results. Feature importance and feature selection methods are usually employed for that. We propose an extension to existing approaches - model agnostic sensitivity algorithm based on Shapley values. The paper describes a full workflow to rock type prediction using well log data: from data preparation, model building, feature selection to causal inference analysis. We made ML models that classify rock types using well logs (sonic, gamma, density, photoelectric and resistivity) from 21 wells as predictors and conduct a causal inference analysis between reservoir quality and well logs responses using Shapley values (a concept from a game theory). As a result of feature selection, we obtained predictors which are statistically significant and at the same time relevant in causal relation context. Macro F1-score of the best obtained models for both cases is 0.79 and 0.85 respectively. It was found that the ML models can infer domain knowledge, which allows us to confirm the adequacy of the built ML model for rock types prediction. Our insight was to recognize the need to properly account for the underlying causal structure between the features and rock types in order to derive meaningful and relevant predictors that carry a significant amount of information contributing to the final outcome. Also, we demonstrate the robustness of revealed patterns by applying the Shapley values methodology to a number of ML models and show consistency in order of the most important predictors. Our analysis shows that machine learning classifiers gaining high accuracy tend to mimic physical principles behind different logging tools, in particular: the longer the travel time of an acoustic wave the higher probability that media is represented by reservoir rock and vice versa. On the contrary lower values of natural radioactivity and density of rock highlight the presence of a reservoir. The article presents causal inference analysis of ML classification models using Shapley values on 2 real-world reservoirs. The rock class labels from core data are used to train a supervised machine learning algorithm to predict classes from well log response. The aim of supervised learning is to label a small portion of a dataset and allow the algorithm to automate the rest. Such data-driven analysis may optimize well logging, coring, and core analysis programs. This algorithm can be extended to any other reservoir to improve rock type prediction. The novelty of the paper is that such analysis reveals the nature of decisions made by the ML model and allows to apply truly robust and reliable petrophysics-consistent ML models for rock type classification.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Peiqing Lian ◽  
Cuiyu Ma ◽  
Bingyu Ji ◽  
Taizhong Duan ◽  
Xuequn Tan

There are many types of carbonate reservoir rock spaces with complex shapes, and their primary pore structure changes dramatically. In order to describe the heterogeneity of K carbonate reservoir, equations of porosity, permeability and pore throat radii under different mercury injection saturations are fitted, and it shows that 30% is the best percentile. R30 method is presented for rock typing, and six rock types are divided according to R30 value of plugs. The porosity-permeability relationship is established for each rock type, and their relevant flow characteristics of each rock type have been studied. Logs are utilized to predict rock types of noncored wells, and a three-dimensional (3D) rock type model has been established based on the well rock type curves and the sedimentary facies constraint. Based on the relationship between J function and water saturation, the formula of water saturation, porosity, permeability, and oil column height can be obtained by multiple regressions for each rock type. Then, the water saturation is calculated for each grid, and a 3D water saturation model is established. The model can reflect the formation heterogeneity and the fluid distribution, and its accuracy is verified by the history matching.


2020 ◽  
Vol 8 (4) ◽  
pp. T953-T965
Author(s):  
Taizhong Duan ◽  
Wenbiao Zhang ◽  
Xinbian Lu ◽  
Meng Li ◽  
Huawei Zhao ◽  
...  

Fault-controlled karst carbonate reservoirs are one of the most important reservoir types in the Tahe oilfield of the Tarim Basin. These reservoirs have a large oil reserve and belong to a strongly reconstructed reservoir type with a highly heterogeneous distribution of pores and fractures. This study characterizes a fault-controlled karst reservoir by using integrated methods, including outcrops, well logging, structure interpretation, seismic inversion, and statistical geomodeling. We have established a fault-/fracture-controlling karstic geologic model and classified the internal architectural elements so that we adopted an origin-controlled hierarchical geomodeling strategy based on the fault-controlling characteristics. The results determined that large strike-slip faults provide an important tectonic framework and that its derived fractures act as important channels and spaces for dissolution. Flower structure fault zones and the associated fractures are the main range of karst development, within which a high stress is concentrated during the strike-slip shear process with a high-density fracture development. This is the highly developed karst reservoir, which mainly is concentrated along large faults. The coexistence of fractures and karst dissolution has resulted in a complicated reservoir architecture (karst architecture), which can be classified into four types: (1) large caverns, (2) small caverns and vugs, (3) fractured zones, and (4) matrix (tight limestone). Controlled by the degree of dissolution, the karst architecture is quite different from the sedimentary facies. Large caverns are formed under the strongest degree of dissolution and are the most favorable reservoir type. Small caves and vugs are created under relatively strong dissolution; they are distributed outside large caves and also can act as favorable reservoirs. The fractured zones are not necessarily affected by strong dissolution but have high conductivity and act as important channels for fluid movement. The carbonate matrix is less reconstructed. The architecture development model of the fault-controlled karst carbonate reservoir presented a tree system, within which the karst reservoir caves are connected by the fractures and faults similar to fruits and trunks. The new geomodeling method revealed the constraining characteristics of faults, seismic attributes, and hierarchical architectural elements. Furthermore, we also have built a 3D model of the Tuoputai unit in the Tahe oilfield to show the robustness of this workflow. This research enables us to better understand the structure of fault-controlled karst reservoirs, and it could provide a specified characterization approach that is considered to be theoretically and practically useful.


Author(s):  
Sadonya Jamal Mustafa ◽  
Fraidoon Rashid ◽  
Khalid Mahmmud Ismail

Permeability is considered as an efficient parameter for reservoir modelling and simulation in different types of rocks. The performance of a dynamic model for estimation of reservoir properties based on liquid permeability has been widely established for reservoir rocks. Consequently, the validated module can be applied into another reservoir type with examination of the validity and applicability of the outcomes. In this study the heterogeneous carbonate reservoir rock samples of the Tertiary Baba Formation have been collected to create a new module for estimation of the brine permeability from the corrected gas permeability. In addition, three previously published equations of different reservoir rock types were evaluated using the heterogenous carbonate samples. The porosity and permeability relationships, permeability distribution, pore system and rock microstructures are the dominant factors that influenced on the limitation of these modules for calculating absolute liquid permeability from the klinkenberg-corrected permeability. The most accurate equation throughout the selected samples in this study was the heterogenous module and the lowest quality permeability estimation was derived from the sandstone module.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinxin Fang ◽  
Hong Feng

AbstractRock typing is an extremely critical step in the estimation of carbonate reservoir quality and reserves in the Middle East. In order to recognize the rock types of carbonate reservoirs in the Mishrif Formation better, classify the reservoirs accurately, and establish the permeability model in line with the study area precisely, it is necessary to study the recognition method conforming to the actual situation of the study area. The practice shows that the current recognition methods based on capillary pressure curve, flow unit and NMR logging data can effectively distinguish rock types, but a large number of accurate experimental data are required, which can only be applied in a few cored well, however, cannot be applied in the whole oil field. In this study, based on core, thin section, logging data, the sedimentary characteristics of carbonate reservoir, logging response of four rock types as well as porosity and permeability characteristics of Mishrif Formation in W are comprehensively studied. Based on Bayesian stepwise discriminant theory in multivariate statistics, the Bayesian discrimination model based on conventional logging data is established. The examining results showed that, compared with the description of logging and coring, the accuracy of Bayesian discriminant model and cross confirmation rate have achieved more than 80% for the original sample. Reliability verification showed that the matching degree of the rock type recognized in the non-cored well with the core and mud logging was as high as 90%, which matched the depositional environment of the entire region. The study results confirm the validity and generalizability of the Bayesian method to identify and predict rock types, which can be applied to the entire Middle East region to solve the problem of the lack of core data to accurately evaluate the quality of non-cored wells and accurately predict production, meeting the needs of actual reservoir evaluation and production development in the Middle East.


2002 ◽  
Vol 5 (03) ◽  
pp. 237-248 ◽  
Author(s):  
Sang Heon Lee ◽  
Arun Kharghoria ◽  
Akhil Datta-Gupta

Summary We propose a two-step approach to permeability prediction from well logs that uses nonparametric regression in conjunction with multivariate statistical analysis. First, we classify the well-log data into electrofacies types. This classification does not require any artificial subdivision of the data population; it follows naturally based on the unique characteristics of well-log measurements reflecting minerals and lithofacies within the logged interval. A combination of principal components analysis (PCA), model-based cluster analysis (MCA), and discriminant analysis is used to characterize and identify electrofacies types. Second, we apply nonparametric regression techniques to predict permeability using well logs within each electrofacies. Three nonparametric approaches are examined - alternating conditional expectations (ACE), generalized additive model (GAM), and neural networks (NNET) - and the relative advantages and disadvantages are explored. We have applied the proposed technique to the Salt Creek Field Unit (SCFU), a highly heterogeneous carbonate reservoir in the Permian Basin, west Texas. The results are compared with three other approaches to permeability predictions that use data partitioning based on reservoir layering, lithofacies information, and hydraulic flow units (HFUs). An examination of the error rates associated with discriminant analysis for uncored wells indicates that data classification based on electrofacies characterization is more robust compared to other approaches. For permeability predictions, the ACE model appears to outperform the other nonparametric approaches. Introduction Estimating rock permeability from well logs in uncored wells is an important yet difficult task in reservoir characterization. Most commonly, permeability is estimated from various well logs using either an empirical relationship or some form of statistical regression (parametric or nonparametric). The empirical models may not be applicable in regions with different depositional environments without making adjustments to constants or exponents in the model. Also, significant uncertainty exists in the determination of irreducible water saturation and cementation factor in these models. Statistical regression has been proposed as a more versatile solution to the problem of permeability estimation. Conventional statistical regression has generally been done parametrically using multiple linear or nonlinear models that require a priori assumptions regarding functional forms.1,2 In recent years, nonparametric regression techniques such as ACE and NNET have been introduced to overcome the limitations of conventional multiple-regression methods.3–6 Applications to complex carbonate reservoirs have shown great promise in handling many forms of heterogeneity in rock properties. However, significant difficulties remain in the identification of sharp local variations in reservoir properties caused by abrupt changes in the depositional environment. Another distinctive feature in carbonate reservoirs is the porosity/permeability mismatch (i.e., low permeability in regions exhibiting high porosity and vice versa). All these features are extremely important from the viewpoint of fluid flow predictions, particularly early-breakthrough response along high-permeability streaks. Several approaches have been proposed to partition well-log responses into distinct classes to improve permeability predictions. The simplest approach uses flow zones or reservoir layering.4 Other approaches have used lithofacies information identified from cores, as well as the concept of HFUs.7–11 However, because of extreme petrophysical variations rooted in diagenesis and complex pore geometry, even within a single zone or class, a reliable correlation of permeability and logs frequently cannot be developed. A major difficulty in this regard has been the classification of well logs in uncored wells.12 Generally, a suite of logs can provide valuable but indirect information about the mineralogy, texture, sedimentary structure, fluid content, and hydraulic properties of a reservoir. The distinct log responses in the formation represent electrofacies13 that very often can be correlated with actual lithofacies identified from cores, based on depositional and diagenetic characteristics. The importance of electrofacies characterizations in reservoir description and management has been widely recognized.8,9,12–16 The objective of this paper is to further improve permeability predictions in heterogeneous carbonate reservoirs through a combination of electrofacies characterization and nonparametric regression techniques. We have applied the proposed technique to a highly heterogeneous carbonate reservoir in the Permian Basin, west Texas: Salt Creek Field Unit (SCFU). The results are compared with three other commonly used techniques for permeability predictions that use data partitioning based on reservoir layering, lithofacies information, and HFUs. Methodology Our proposed method is a statistical regression approach to permeability prediction from well logs based on data partitioning and correlation. Broadly, the method consists of two major parts:data classification through electrofacies determination, andpermeability correlation with nonparametric regression techniques. To characterize and identify electrofacies groups, we perform a multivariate analysis of the well-log data using PCA, MCA, and discriminant analysis.8,9,12–16 Such electrofacies classification does not require any artificial subdivision of the data population: it follows naturally based on the unique characteristics of welllog measurements reflecting minerals and lithofacies within the logged interval. For permeability correlation, three different nonparametric regression techniques are considered - ACE, GAM, and NNET - and the relative advantages and disadvantages are explored.3-6,21–26 Electrofacies Determination The method used to perform the electrofacies classification is based on attempts to identify clusters of well-log responses with similar characteristics. This three-step procedure is discussed next.


2021 ◽  
Author(s):  
Mohamed Masoud ◽  
W. Scott Meddaugh ◽  
Masoud Eljaroshi ◽  
Khaled Elghanduri

Abstract The Harash Formation was previously known as the Ruaga A and is considered to be one of the most productive reservoirs in the Zelten field in terms of reservoir quality, areal extent, and hydrocarbon quantity. To date, nearly 70 wells were drilled targeting the Harash reservoir. A few wells initially naturally produced but most had to be stimulated which reflected the field drilling and development plan. The Harash reservoir rock typing identification was essential in understanding the reservoir geology implementation of reservoir development drilling program, the construction of representative reservoir models, hydrocarbons volumetric calculations, and historical pressure-production matching in the flow modelling processes. The objectives of this study are to predict the permeability at un-cored wells and unsampled locations, to classify the reservoir rocks into main rock typing, and to build robust reservoir properties models in which static petrophysical properties and fluid properties are assigned for identified rock type and assessed the existed vertical and lateral heterogeneity within the Palaeocene Harash carbonate reservoir. Initially, an objective-based workflow was developed by generating a training dataset from open hole logs and core samples which were conventionally and specially analyzed of six wells. The developed dataset was used to predict permeability at cored wells through a K-mod model that applies Neural Network Analysis (NNA) and Declustring (DC) algorithms to generate representative permeability and electro-facies. Equal statistical weights were given to log responses without analytical supervision taking into account the significant log response variations. The core data was grouped on petrophysical basis to compute pore throat size aiming at deriving and enlarging the interpretation process from the core to log domain using Indexation and Probabilities of Self-Organized Maps (IPSOM) classification model to develop a reliable representation of rock type classification at the well scale. Permeability and rock typing derived from the open-hole logs and core samples analysis are the main K-mod and IPSOM classification model outputs. The results were propagated to more than 70 un-cored wells. Rock typing techniques were also conducted to classify the Harash reservoir rocks in a consistent manner. Depositional rock typing using a stratigraphic modified Lorenz plot and electro-facies suggest three different rock types that are probably linked to three flow zones. The defined rock types are dominated by specifc reservoir parameters. Electro-facies enables subdivision of the formation into petrophysical groups in which properties were assigned to and were characterized by dynamic behavior and the rock-fluid interaction. Capillary pressure and relative permeability data proved the complexity in rock capillarity. Subsequently, Swc is really rock typing dependent. The use of a consistent representative petrophysical rock type classification led to a significant improvement of geological and flow models.


1999 ◽  
Vol 2 (02) ◽  
pp. 149-160 ◽  
Author(s):  
D.K. Davies ◽  
R.K. Vessell ◽  
J.B. Auman

Summary This paper presents a cost effective, quantitative methodology for reservoir characterization that results in improved prediction of permeability, production and injection behavior during primary and enhanced recovery operations. The method is based fundamentally on the identification of rock types (intervals of rock with unique pore geometry). This approach uses image analysis of core material to quantitatively identify various pore geometries. When combined with more traditional petrophysical measurements, such as porosity, permeability and capillary pressure, intervals of rock with various pore geometries (rock types) can be recognized from conventional wireline logs in noncored wells or intervals. This allows for calculation of rock type and improved estimation of permeability and saturation. Based on geological input, the reservoirs can then be divided into flow units (hydrodynamically continuous layers) and grid blocks for simulation. Results are presented of detailed studies in two, distinctly different, complex reservoirs: a low porosity carbonate reservoir and a high porosity sandstone reservoir. When combined with production data, the improved characterization and predictability of performance obtained using this unique technique have provided a means of targeting the highest quality development drilling locations, improving pattern design, rapidly recognizing conformance and formation damage problems, identifying bypassed pay intervals, and improving assessments of present and future value. Introduction This paper presents a technique for improved prediction of permeability and flow unit distribution that can be used in reservoirs of widely differing lithologies and differing porosity characteristics. The technique focuses on the use and integration of pore geometrical data and wireline log data to predict permeability and define hydraulic flow units in complex reservoirs. The two studies presented here include a low porosity, complex carbonate reservoir and a high porosity, heterogeneous sandstone reservoir. These reservoir classes represent end-members in the spectrum of hydrocarbon reservoirs. Additionally, these reservoirs are often difficult to characterize (due to their geological complexity) and frequently contain significant volumes of remaining reserves.1 The two reservoir studies are funded by the U.S. Department of Energy as part of the Class II and Class III Oil Programs for shallow shelf carbonate (SSC) reservoirs and slope/basin clastic (SBC) reservoirs. The technique described in this paper has also been used to characterize a wide range of other carbonate and sandstone reservoirs including tight gas sands (Wilcox, Vicksburg, and Cotton Valley Formations, Texas), moderate porosity sandstones (Middle Magdalena Valley, Colombia and San Jorge Basin, Argentina), and high porosity reservoirs (Offshore Gulf Coast and Middle East). The techniques used for reservoir description in this paper meet three basic requirements that are important in mature, heterogeneous fields.The reservoir descriptions are log-based. Flow units are identified using wireline logs because few wells have cores. Integration of data from analysis of cores is an essential component of the log models.Accurate values of permeability are derived from logs. In complex reservoirs, values of porosity and saturation derived from routine log analysis often do not accurately identify productivity. It is therefore necessary to develop a log model that will allow the prediction of another producibility parameter. In these studies we have derived foot-by-foot values of permeability for cored and non-cored intervals in all wells with suitable wireline logs.Use only the existing databases. No new wells will be drilled to aid reservoir description. Methodology Techniques of reservoir description used in these studies are based on the identification of rock types (intervals of rock with unique petrophysical properties). Rock types are identified on the basis of measured pore geometrical characteristics, principally pore body size (average diameter), pore body shape, aspect ratio (size of pore body: size of pore throat) and coordination number (number of throats per pore). This involves the detailed analysis of small rock samples taken from existing cores (conventional cores and sidewall cores). The rock type information is used to develop the vertical layering profile in cored intervals. Integration of rock type data with wireline log data allows field-wide extrapolation of the reservoir model from cored to non-cored wells. Emphasis is placed on measurement of pore geometrical characteristics using a scanning electron microscope specially equipped for automated image analysis procedures.2–4 A knowledge of pore geometrical characteristics is of fundamental importance to reservoir characterization because the displacement of hydrocarbons is controlled at the pore level; the petrophysical properties of rocks are controlled by the pore geometry.5–8 The specific procedure includes the following steps.Routine measurement of porosity and permeability.Detailed macroscopic core description to identify vertical changes in texture and lithology for all cores.Detailed thin section and scanning electron microscope analyses (secondary electron imaging mode) of 100 to 150 small rock samples taken from the same locations as the plugs used in routine core analysis. In the SBC reservoir, x-ray diffraction analysis is also used. The combination of thin section and x-ray analyses provides direct measurement of the shale volume, clay volume, grain size, sorting and mineral composition for the core samples analyzed.Rock types are identified for each rock sample using measured data on pore body size, pore throat size and pore interconnectivity (coordination number and pore arrangement).


2021 ◽  
Vol 11 (4) ◽  
pp. 1577-1595
Author(s):  
Rasoul Ranjbar-Karami ◽  
Parisa Tavoosi Iraj ◽  
Hamzeh Mehrabi

AbstractKnowledge of initial fluids saturation has great importance in hydrocarbon reservoir analysis and modelling. Distribution of initial water saturation (Swi) in 3D models dictates the original oil in place (STOIIP), which consequently influences reserve estimation and dynamic modelling. Calculation of initial water saturation in heterogeneous carbonate reservoirs always is a challenging task, because these reservoirs have complex depositional and diagenetic history with a complex pore network. This paper aims to model the initial water saturation in a pore facies framework, in a heterogeneous carbonate reservoir. Petrographic studies were accomplished to define depositional facies, diagenetic features and pore types. Accordingly, isolated pores are dominant in the upper parts, while the lower intervals contain more interconnected interparticle pore types. Generally, in the upper and middle parts of the reservoir, diagenetic alterations such as cementation and compaction decreased the primary reservoir potential. However, in the lower interval, which mainly includes high-energy shoal facies, high reservoir quality was formed by primary interparticle pores and secondary dissolution moulds and vugs. Using huge number of primary drainage mercury injection capillary pressure tests, we evaluate the ability of FZI, r35Winland, r35Pittman, FZI* and Lucia’s petrophysical classes in definition of rock types. Results show that recently introduced rock typing method is an efficient way to classify samples into petrophysical rock types with same pore characteristics. Moreover, as in this study MICP data were available from every one meter of reservoir interval, results show that using FZI* method much more representative sample can be selected for SCAL laboratory tests, in case of limitation in number of SCAL tests samples. Integration of petrographic analyses with routine (RCAL) and special (SCAL) core data resulted in recognition of four pore facies in the studied reservoir. Finally, in order to model initial water saturation, capillary pressure data were averaged in each pore facies which was defined by FZI* method and using a nonlinear curve fitting approach, fitting parameters (M and C) were extracted. Finally, relationship between fitting parameters and porosity in core samples was used to model initial water saturation in wells and between wells. As permeability prediction and reservoir rock typing are challenging tasks, findings of this study help to model initial water saturation using log-derived porosity.


SPE Journal ◽  
2020 ◽  
Vol 25 (05) ◽  
pp. 2778-2800 ◽  
Author(s):  
Harpreet Singh ◽  
Yongkoo Seol ◽  
Evgeniy M. Myshakin

Summary The application of specialized machine learning (ML) in petroleum engineering and geoscience is increasingly gaining attention in the development of rapid and efficient methods as a substitute to existing methods. Existing ML-based studies that use well logs contain two inherent limitations. The first limitation is that they start with one predefined combination of well logs that by default assumes that the chosen combination of well logs is poised to give the best outcome in terms of prediction, although the variation in accuracy obtained through different combinations of well logs can be substantial. The second limitation is that most studies apply unsupervised learning (UL) for classification problems, but it underperforms by a substantial margin compared with nearly all the supervised learning (SL) algorithms. In this context, this study investigates a variety of UL and SL ML algorithms applied on multiple well-log combinations (WLCs) to automate the traditional workflow of well-log processing and classification, including an optimization step to achieve the best output. The workflow begins by processing the measured well logs, which includes developing different combinations of measured well logs and their physics-motivated augmentations, followed by removal of potential outliers from the input WLCs. Reservoir lithology with four different rock types is investigated using eight UL and seven SL algorithms in two different case studies. The results from the two case studies are used to identify the optimal set of well logs and the ML algorithm that gives the best matching reservoir lithology to its ground truth. The workflow is demonstrated using two wells from two different reservoirs on Alaska North Slope to distinguish four different rock types along the well (brine-dominated sand, hydrate-dominated sand, shale, and others/mixed compositions). The results show that the automated workflow investigated in this study can discover the ground truth for the lithology with up to 80% accuracy with UL and up to 90% accuracy with SL, using six routine well logs [vp, vs, ρb, ϕneut, Rt, gamma ray (GR)], which is a significant improvement compared with the accuracy reported in the current state of the art, which is less than 70%.


Sign in / Sign up

Export Citation Format

Share Document