Tree-ring and summer-temperature response to volcanic aerosol forcing at the northern tree-line, Kola Peninsula, Russia

The Holocene ◽  
2001 ◽  
Vol 11 (4) ◽  
pp. 499-505 ◽  
Author(s):  
Bruce R. Gervais ◽  
Glen M. MacDonald
2008 ◽  
Vol 69 (03) ◽  
pp. 404-412 ◽  
Author(s):  
Heikki Seppä ◽  
Glen M. MacDonald ◽  
H. John B. Birks ◽  
Bruce R. Gervais ◽  
Jeffrey A. Snyder

We present two new quantitative July mean temperature (Tjul) reconstructions from the Arctic tree-line region in the Kola Peninsula in north-western Russia. The reconstructions are based on fossil pollen records and cover the Younger Dryas stadial and the Holocene. The inferred temperatures are less reliable during the Younger Dryas because of the poorer fit between the fossil pollen samples and the modern samples in the calibration set than during the Holocene. The results suggest that the Younger Dryas Tjulin the region was 8.0–10.0°C, being 2.0–3.0°C lower than at present. The Holocene summer temperature maximum dates to 7500–6500 cal yr BP, with Tjulabout 1.5°C higher than at present. These new records contribute to our understanding of summer temperature changes along the northern-European tree-line region. The Holocene trends are consistent in most of the independent records from the Fennoscandian–Kola tree-line region, with the beginning of the Holocene thermal maximum no sooner than at about 8000 cal yr BP. In the few existing temperature-related records farther east in the Russian Arctic tree line, the period of highest summer temperature begins already at about 10,000 cal yr BP. This difference may reflect the strong influence of the Atlantic coastal current on the atmospheric circulation pattern and the thermal behaviour of the tree-line region on the Atlantic seaboard, and the more direct influence of the summer solar insolation on summer temperature in the region east of the Kola Peninsula.


2021 ◽  
Author(s):  
Vladimir Matskovsky ◽  
Fidel A. Roig ◽  
Mauricio Fuentes ◽  
Irina Korneva ◽  
Diego Araneo ◽  
...  

Abstract Proxy climate records, such as those derived from tree rings, are necessary to extend relatively short instrumental meteorological observations into the past. Tierra del Fuego is the most austral territory with forests in the world, situated close to the Antarctic Peninsula, which makes this region especially interesting for paleoclimatic research. However, high-quality, high-resolution summer temperature reconstruction are lacking in the region. In this study we used 63 tree-ring width chronologies of Nothofagus pumilio and Nothofagus betuloides and partial least squares regression (PLSR) to produce annually resolved December-to-February temperature reconstruction since AD 1600 which explains up to 65% of instrumental temperature variability. We also found that observed summer temperature variability in Tierra del Fuego is primarily driven by the fluctuations of atmospheric pressure systems both in the South Atlantic and South Pacific, while it is insignificantly correlated to major hemispheric modes: ENSO and SAM. This fact makes our reconstruction important for climate modelling experiments, as it represents specific regional variability. Our reconstruction can be used for direct comparison with model outputs to better understand model limitations or to tune a model or contribute to larger scale reconstructions based on paleoclimatic data assimilation. Moreover, we showed that PLSR has improved performance over principal component regression (PCR) in the case of multiple tree-ring predictors. According to these results, PLSR may be a preferable method over PCR for the use in automated tree-ring based reconstruction approaches, akin widely used point-by-point regression.


2007 ◽  
Vol 3 (1) ◽  
pp. 119-128 ◽  
Author(s):  
O. Solomina ◽  
G. Wiles ◽  
T. Shiraiwa ◽  
R. D'Arrigo

Abstract. Tree ring, ice core and glacial geologic histories for the past several centuries offer an opportunity to characterize climate variability and to identify the key climate parameters forcing glacier expansion in Kamchatka over the past 400 years. A newly developed larch ring-width chronology (AD 1632–2004) is presented that is sensitive to past summer temperature variability. Individual low growth years in the larch record are associated with several known and proposed volcanic events from the Northern Hemisphere. The comparison of ring width minima and those of Melt Feature Index of Ushkovsky ice core helps confirm a 1–3 year dating accuracy~for this ice core series over the late 18th to 20th centuries. Decadal variations of low summer temperatures (tree-ring record) and high annual precipitation (ice core record) are broadly consistent with intervals of positive mass balances measured and estimated at several glaciers in 20th century, and with moraine building. According to the tree-ring data the 1860s–1880s were the longest coldest interval in the last 350 years. The latest part of this period (1880s) coincided with the positive anomaly in accumulation. This coincidence led to a positive mass balance, which is most likely responsible for glacier advances and moraine deposition of the end of 19th-early 20th centuries. As well as in some other high latitude regions (Spitsbergen, Polar Urals, Franz Jozef Land etc.) in Kamchatka these advances marked the last millennium glacial maximum. In full agreement with subsequent summer warming trend, inferred both from instrumental and tree ring data, glacier advances since 1880s have been less extensive. The late 18th century glacier expansion coincides with the inferred summer temperature decrease recorded by the ring width chronology. However, both the advance and the summer temperature decrease were less prominent that in the end of 19th century. Comparisons of the glacier history in Kamchatka with records from Alaska and the Canadian Rockies suggests broadly consistent intervals of glacier expansion and inferred summer cooling during solar irradiance minima.


1977 ◽  
Vol 7 (1) ◽  
pp. 63-111 ◽  
Author(s):  
George H. Denton ◽  
Wibjörn Karlén

Complex glacier and tree-line fluctuations in the White River valley on the northern flank of the St. Elias and Wrangell Mountains in southern Alaska and Yukon Territory are recognized by detailed moraine maps and drift stratigraphy, and are dated by dendrochronology, lichenometry,14C ages, and stratigraphic relations of drift to the eastern (123014C yr BP) and northern (198014C yr BP) lobes of the White River Ash. The results show two major intervals of expansion, one concurrent with the well-known and widespread Little Ice Age and the other dated between 2900 and 210014C yr BP, with a culmination about 2600 and 280014C yr BP. Here, the ages of Little Ice Age moraines suggest fluctuating glacier expansion between ad 1500 and the early 20th century. Much of the 20th century has experienced glacier recession, but probably it would be premature to declare the Little Ice Age over. The complex moraine systems of the older expansion interval lie immediately downvalley from Little Ice Age moraines, suggesting that the two expansion intervals represent similar events in the Holocene, and hence that the Little Ice Age is not unique. Another very short-lived advance occurred about 1230 to 105014C yr BP. Spruce immigrated into the valley to a minimum altitude of 3500 ft (1067 m), about 600 ft (183 m) below the current spruce tree line of 4100 ft (1250 m), at least by 802014C yr BP. Subsequent intervals of high tree line were in accord with glacier recession; in fact, several spruce-wood deposits above current tree line occur bedded between Holocene tills. High deposits of fossil wood range up to 76 m above present tree line and are dated at about 5250, 3600 to 3000, and 2100 to 123014C yr BP. St. Elias glacial and tree-line fluctuations, which probably are controlled predominantly by summer temperature and by length of the growing and ablation seasons, correlate closely with a detailed Holocene tree-ring curve from California, suggesting a degree of synchronism of Holocene summer-temperature changes between the two areas. This synchronism is strengthened by comparison with the glacier record from British Columbia and Mt. Rainier. Likewise, broad synchronism of Holocene events exists across the Arctic between the St. Elias Mountains and Swedish Lappland. Finally, two sequences from the Southern Hemisphere show similar records, in so far as dating allows. Hence, we believe that a preliminary case can be made for broad synchronism of Holocene climatic fluctuations in several regions, although further data are needed and several areas, particularly Colorado and Baffin Island, show major differences in the regional pattern.


2014 ◽  
Vol 29 (5) ◽  
pp. 487-494 ◽  
Author(s):  
JAN ESPER ◽  
ELISABETH DÜTHORN ◽  
PAUL J. KRUSIC ◽  
MAURI TIMONEN ◽  
ULF BÜNTGEN

2012 ◽  
Vol 77 (3) ◽  
pp. 344-354 ◽  
Author(s):  
Anna Coppola ◽  
Giovanni Leonelli ◽  
Maria Cristina Salvatore ◽  
Manuela Pelfini ◽  
Carlo Baroni

Tree rings from temperature-limited environments are highly sensitive climate proxies, widely used to reconstruct past climate parameters for periods prior to the availability of instrumental data and to analyse the effect of recent global warming on tree growth. An analysis of the climatic signal in five high-elevation tree-ring width chronologies of European larch (Larix decidua Mill.) from the tops of five different glacial valleys in the Italian Central Alps revealed that they contain a strong summer-temperature signal and that tree-ring growth is especially influenced by June temperatures. However, a moving correlation function analysis revealed a recent loss of the June temperature signal in the tree-ring chronologies. This signal reduction primarily involves the two lowest-altitude chronologies. It is probable that the observed increasing importance of late-summer temperature for tree-ring growth over the past 50 yr is an effect of the lengthening growing season and of the variations in the climate/tree-ring relationship over time. All the chronologies considered, especially those at the highest altitudes, show an increasing negative influence of June precipitation on tree-ring growth. The climatic signal recorded in tree-ring chronologies from the Italian Central Alps varies over time and is also differentially influenced by climatic parameters according to site elevation.


Sign in / Sign up

Export Citation Format

Share Document