Prehistoric maritime migration in the Pacific islands: an hypothesis of ENSO forcing

The Holocene ◽  
2006 ◽  
Vol 16 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Atholl Anderson ◽  
John Chappell ◽  
Michael Gagan ◽  
Richard Grove

Long-distance human migration across the Pacific Ocean occurred during the late Holocene and originated almost entirely in the west. As prevailing tradewinds blow from the east, the mechanisms of prehistoric seafaring have been debated since the sixteenth century. Inadequacies in propositions of accidental or opportunistic drifting on occasional westerlies were exposed by early computer simulation. Experimental voyaging in large, fast, weatherly (windward-sailing) double-canoes, together with computer simulation incorporating canoe performance data and modern, averaged, wind conditions, has supported the traditional notion of intentional passage-making in a widely accepted hypothesis of upwind migration by strategic voyaging. The critical assumption that maritime technology and sailing conditions were effectively the same prehistorically as in the historical and modern records is, however, open to question. We propose here that maritime technology during the late-Holocene migrations did not permit windward sailing, and show that the episodic pattern of initial island colonization, which is disclosed in recent archaeological data, matches periods of reversal in wind direction toward westerlies, as inferred from the millennial-scale history of ENSO (El Niño-Southern Oscillation).

2019 ◽  
Vol 104 (1) ◽  
pp. 33-48 ◽  
Author(s):  
Alejandro Zuluaga ◽  
Martin Llano ◽  
Ken Cameron

The subfamily Monsteroideae (Araceae) is the third richest clade in the family, with ca. 369 described species and ca. 700 estimated. It comprises mostly hemiepiphytic or epiphytic plants restricted to the tropics, with three intercontinental disjunctions. Using a dataset representing all 12 genera in Monsteroideae (126 taxa), and five plastid and two nuclear markers, we studied the systematics and historical biogeography of the group. We found high support for the monophyly of the three major clades (Spathiphylleae sister to Heteropsis Kunth and Rhaphidophora Hassk. clades), and for six of the genera within Monsteroideae. However, we found low rates of variation in the DNA sequences used and a lack of molecular markers suitable for species-level phylogenies in the group. We also performed ancestral state reconstruction of some morphological characters traditionally used for genera delimitation. Only seed shape and size, number of seeds, number of locules, and presence of endosperm showed utility in the classification of genera in Monsteroideae. We estimated ancestral ranges using a dispersal-extinction-cladogenesis model as implemented in the R package BioGeoBEARS and found evidence for a Gondwanan origin of the clade. One tropical disjunction (Monstera Adans. sister to Amydrium Schott–Epipremnum Schott) was found to be the product of a previous Boreotropical distribution. Two other disjunctions are more recent and likely due to long-distance dispersal: Spathiphyllum Schott (with Holochlamys Engl. nested within) represents a dispersal from South America to the Pacific Islands in Southeast Asia, and Rhaphidophora represents a dispersal from Asia to Africa. Future studies based on stronger phylogenetic reconstructions and complete morphological datasets are needed to explore the details of speciation and migration within and among areas in Asia.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 583
Author(s):  
Carl C. Christensen ◽  
Robert H. Cowie ◽  
Norine W. Yeung ◽  
Kenneth A. Hayes

Classic biological control of pest non-marine mollusks has a long history of disastrous outcomes, and despite claims to the contrary, few advances have been made to ensure that contemporary biocontrol efforts targeting mollusks are safe and effective. For more than half a century, malacologists have warned of the dangers in applying practices developed in the field of insect biological control, where biocontrol agents are often highly host-specific, to the use of generalist predators and parasites against non-marine mollusk pests. Unfortunately, many of the lessons that should have been learned from these failed biocontrol programs have not been rigorously applied to contemporary efforts. Here, we briefly review the failures of past non-marine mollusk biocontrol efforts in the Pacific islands and their adverse environmental impacts that continue to reverberate across ecosystems. We highlight the fact that none of these past programs has ever been demonstrated to be effective against targeted species, and at least two (the snails Euglandina spp. and the flatworm Platydemus manokwari) are implicated in the extinction of hundreds of snail species endemic to Pacific islands. We also highlight other recent efforts, including the proposed use of sarcophagid flies and nematodes in the genus Phasmarhabditis, that clearly illustrate the false claims that past bad practices are not being repeated. We are not making the claim that biocontrol programs can never be safe and effective. Instead, we hope that in highlighting the need for robust controls, clear and measurable definitions of success, and a broader understanding of ecosystem level interactions within a rigorous scientific framework are all necessary before claims of success can be made by biocontrol advocates. Without such amendments to contemporary biocontrol programs, it will be impossible to avoid repeating the failures of non-marine mollusk biocontrol programs to date.


2020 ◽  
Vol 60 (4) ◽  
pp. 632-643
Author(s):  
Derek Taira

There is a “world of difference,” anthropologist Epeli Hauʻofa argued, “between viewing the Pacific as ‘islands in a far sea’ and as ‘a sea of islands.’” The distinction between both perspectives, he explained, is exemplified in the two names used for the region: Pacific Islands and Oceania. The former represents a colonial vision produced by white “continental men” emphasizing the smallness and remoteness of “dry surfaces in a vast ocean far from centers of power.” This understanding has produced and sustained an “economistic and geographic deterministic view” emphasizing Pacific Island nations as “too small, too poor, and too isolated” to take care of themselves. The latter, in contrast, denotes a grand space inhabited by brave and resourceful people whose myths, legends, oral traditions, and cosmologies reveal how they did not conceive of themselves in such “microscopic proportions.” Rather, Oceanic peoples have for over two millennia viewed the sea as a “large world” where peoples, goods, and cultures moved and mingled unhindered by fixed national boundaries.


2017 ◽  
Author(s):  
Imogen M. Browne ◽  
Christopher M. Moy ◽  
Christina R. Riesselman ◽  
Helen L. Neil ◽  
Lorelei G. Curtin ◽  
...  

Abstract. The Southern Hemisphere westerly winds (SHWW) play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW) and outgassing of CO2 in the Southern Ocean on interannual to glacial-interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP) is limited by a scarcity of paleoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene variability in the SHWW using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E), located in the modern centre of the westerly wind belt. Drainage basin response to variability in the strength of the SHWW at this latitude is reconstructed from downcore variations in magnetic susceptibility (MS) and bulk organic δ13C and atomic C/N, which monitor influxes of lithogenous and terrestrial vs marine organic matter, respectively. The hydrographic response to SHWW variability is reconstructed using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from ~ 1600–900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of vegetation response to climate at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand at the beginning of the Little Ice Age (LIA). Comparison with paleoclimate and paleoceanographic records from southern South America and the western Antarctic Peninsula indicates a late Holocene strengthening of the SHWW after ~ 1600 yr BP that appears to be broadly symmetrical across the Pacific basin, although our reconstruction suggests that this symmetry breaks down during the LIA. Contemporaneous increases in SHWW at localities either side of the Pacific in the late Holocene are likely controlled atmospheric teleconnections between the low and high latitudes and by variability in the Southern Annular Mode (SAM) and El Niño Southern Oscillation (ENSO).


Author(s):  
Olga Kozhar ◽  
Mee-Sook Kim ◽  
Jorge Ibarra Caballero ◽  
Ned Klopfenstein ◽  
Phil Cannon ◽  
...  

Emerging pathogens have been increasing exponentially over the last century. The knowledge on whether these organisms are native to ecosystems or have been recently introduced is often of great importance. Understanding the ecological and evolutionary processes promoting emergence can help to control their spread and forecast epidemics. Using restriction site-associated DNA sequencing data, we studied genetic relationships, pathways of spread, and evolutionary history of Phellinus noxius, an emerging root-rotting fungus of unknown origin, in eastern Asia, Australia, and the Pacific Islands. We analyzed patterns of genetic variation using Bayesian inference, maximum likelihood phylogeny, populations splits and mixtures measuring correlations in allele frequencies and genetic drift, and finally applied coalescent based theory using approximate Bayesian computation (ABC) with supervised machine learning. Population structure analyses revealed five genetic groups with signatures of complex recent and ancient migration histories. The most probable scenario of ancient pathogen spread is movement from west to east: from Malaysia to the Pacific Islands, with subsequent spread to Taiwan and Australia. Furthermore, ABC analyses indicate that P. noxius spread occurred thousands of generations ago, contradicting previous assumptions that it was recently introduced in multiple areas. Our results suggest that recent emergence of P. noxius in east Asia, Australia, and the Pacific Islands is likely driven by anthropogenic and natural disturbances, including deforestation, land-use change, severe weather events, and introduction of exotic plants. This study provides a novel example of utilization of genome wide allele frequency data to unravel dynamics of pathogen emergence under conditions of changing ecosystems.


2016 ◽  
Vol 155 (4) ◽  
pp. 893-906 ◽  
Author(s):  
CHUANBO SHEN ◽  
DI HU ◽  
CHUN SHAO ◽  
LIANFU MEI

AbstractThe Wudang Complex located in the central part of South Qinling, has been inferred to be a segment of the Yangtze Craton involved in the orogen. In this study, the cooling/exhumation history of the Wudang Complex is revealed through combined published geochronology data and new apatite fission-track results. Three rapid exhumation episodes related to relevant geodynamic events have been identified. Previous40Ar–39Ar and (U–Th)/He data indicate that the most significant exhumation, induced by the collision between the North and South China Blocks, occurred fromc.237 to 220 Ma after long-term subsidence and sedimentation of the passive continental margin. The second exhumation event, related to the long-distance effect of the Pacific subduction, occurred during the period fromc.126 to 90 Ma. Following the late Cretaceous – Eocene peneplanation stage, the final late Cenozoic exhumation sincec.15 Ma may be attributed to the combined effect of the eastward growth of the Tibetan Plateau uplift and the Asian monsoon.


Sign in / Sign up

Export Citation Format

Share Document