Susceptibility to Theiler’s murine encephalomyelitis virus-induced demyelinating disease in BALB/cAnNCr mice is related to absence of a CD4+ T-cell subset

2002 ◽  
Vol 8 (6) ◽  
pp. 469-474 ◽  
Author(s):  
K A Karls ◽  
P W Denton ◽  
R W Melvold

Two histocompatible substrains of BALB/c mice (BALB/cByJ, BALB/cAnNCr) are resistant and susceptible, respectively, to Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) - a model for viral etiology of human multiple sclerosis. BALB/cByJ mice become susceptible following low-dose irradiation given prior to infection. Resistance is restored by adoptive transfer of CD8+ (but not CD4+) splenic T cells from infected, unirradiated BALB/cByJ donors. In contrast, resistance is conferred to BALB/cAnNCr mice by adoptive transfer of either CD4+ or CD8+ T cells from resistant BALB/cByJ donors. T cells from BALB/cAnNCr mice cannot confer protection. To integrate these two observations, we hypothesized that the BALB/cAnNCr mice possess precursors of the regulatory CD8+ T cells, but fail to activate them because they lack a critical CD4+ T-cell subpopulation. We tested this model using serial transfers. The transfer of CD4+ T cells from the BALB/cByJ to the BALB/cAnNCr mice permitted development of BALB/cAnNCr CD8+ T cells that, in turn, provided resistance when transferred into susceptible recipients. The BALB/cByJ CD4+ T cells, which activated the CD8+ cells, were sensitive to low-dose irradiation, unlike CD4+ T cells involved in the later inflammatory demyelination. Thus, susceptibility of BALB/cAnNCr mice is due to a defective/absent CD4+ T -cell subset acting immediately after infection.

2009 ◽  
Vol 88 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Jillian E. Wohler ◽  
Sherry S. Smith ◽  
Scott R. Barnum

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 225-225
Author(s):  
Kazuyuki Murase ◽  
Yutaka Kawano ◽  
Jeremy Ryan ◽  
Ken-ichi Matsuoka ◽  
Gregory Bascug ◽  
...  

Abstract Abstract 225 CD4+CD25+Foxp3+ regulatory T cells (Treg) are known to play a central role in the maintenance of self-tolerance and immune homeostasis. After allogeneic stem cell transplantation, impaired recovery of Treg is associated with the development of cGVHD. Interleukin-2 (IL-2) is a critical regulator of Treg development, expansion and survival and lack of IL-2 results in Treg deficiency. In patients with cGVHD, we previously demonstrated that Treg proliferate at high levels but this subset is also highly susceptible to apoptosis leading to inadequate Treg numbers (Matsuoka et al. JCI 2010). We also reported that low-dose IL-2 administration resulted in selective expansion of Treg in vivo and clinical improvement of cGVHD (Koreth et al. NEJM 2011). To identify mechanisms responsible for increased Treg susceptibility to apoptosis in cGVHD we used a new flow cytometry-based assay to measure mitochondrial membrane depolarization in response to a panel of pro-apoptotic BH3 peptides (BIM, BID, BAD, NOXA, PUMA, BMF, HRK). This assessment allowed us to compare BH3 peptide-induced mitochondrial membrane depolarization (“priming”) in different T cell subsets, including CD4 Treg, conventional CD4 T cells (CD4 Tcon), and CD8 T cells. Expression of Bcl-2, CD95 and Ki67 were also studied in each T cell subset. We studied peripheral blood samples from 36 patients with hematologic malignancies (median age 59 yr) who are > 2 years post HSCT (27 patients with cGVHD and 9 patients without cGVHD) and 15 patients who received daily subcutaneous IL-2 for 8 weeks for treatment of steroid-refractory cGvHD. Severity of cGVHD was classified according to NIH criteria. In patients without cGVHD, BH3 priming was similar in all 3 T cell subsets (CD4 Treg, CD4 Tcon and CD8). In patients with cGVHD, CD4 Treg were more primed than CD4 Tcon when challenged with BIM, BAD, PUMA, BMF and the combination of BAD + NOXA peptides (p<0.01 – 0.0001). Treg were more primed than CD8 T cells when challenged with PUMA peptide (p<0.0001), but priming in Treg and CD8 T cells was similar for other BH3 peptides in patients with cGVHD. We also compared BH3 priming of each T cell subset in patients with different grades of cGVHD. When challenged with BH3 peptides, Treg, Tcon and CD8 T cells were less primed in patients with severe cGVHD. In patients with cGVHD, Treg expressed higher levels of Ki-67, higher levels of CD95 and lower levels of Bcl-2 than Tcon. Expression of CD95 did not vary with severity of GVHD in any T cell subset, but expression of Bcl-2 was significantly increased in all subsets in patients with severe cGVHD. Increased BH3 priming and high expression of CD95 indicate that Treg are more susceptible to apoptosis than Tcon in cGVHD. However, both Treg and Tcon become less primed and Bcl-2 levels increase in severe cGVHD suggesting that these cells are less susceptible to mitochondrial pathway apoptosis. Since the total number of Treg and Tcon are significantly reduced in patients with cGVHD, these findings suggest that the remaining circulating cells are relatively resistant to mitochondrial pathway apoptosis. CD95 expression in Treg remains high indicating no change in death receptor pathway apoptosis. Daily treatment with low-dose IL-2 for 8 weeks selectively expands Treg in vivo in patients with severe cGVHD. As the number of Treg increase, BH3 profiling shows that these cells gradually become more primed and therefore more susceptible to mitochondrial pathway apoptosis. Taken together, these studies help define the complex and distinct pathways that regulate survival in different T cell subsets and changes in these pathways that occur in patients with chronic GVHD. These pathways play important roles in the maintenance of T cell homeostasis and targeting these complex pathways can provide new opportunities to promote immune tolerance after allogeneic HSCT. Disclosures: No relevant conflicts of interest to declare.


Immunotherapy ◽  
2009 ◽  
Vol 1 (4) ◽  
pp. 663-678
Author(s):  
Shubhada Chiplunkar ◽  
Swati Dhar ◽  
Daniela Wesch ◽  
Dieter Kabelitz

γδ T lymphocytes are a distinct T-cell subset that display unique features with respect to T-cell receptor (TCR) gene usage, tissue tropism and antigen recognition. Phosphoantigens contributed by a dysregulated mevalonate pathway or the bacterial nonmevalonate pathway and aminobisphosphonates are capable of activating Vγ9Vδ2 T cells. With the aid of synthetic phosphoantigens, large-scale expansion of γδ T cells and their adoptive transfer into human hosts is now possible. The present review summarizes triumphs and tribulations of clinical trials using γδ T-cell immunotherapy. Adoptive transfer of phosphoantigen-activated γδ T cells or coadministration with aminobisphosphonates/cytokines/monoclonal antibodies appear to be promising approaches for cancer immunotherapy. It can be predicted that a comprehensive understanding of the molecular interactions of this unique T-cell subset with other key immune regulators (dendritic cells and regulatory T cells) will provide an impetus to bring this modality of treatment from bench to bedside.


2018 ◽  
Author(s):  
Shuhao Zhang ◽  
Shyamal Goswami ◽  
Jiaqiang Ma ◽  
Lu Meng ◽  
Youping Wang ◽  
...  

2015 ◽  
Vol 11 (3) ◽  
pp. e1004671 ◽  
Author(s):  
Krista E. van Meijgaarden ◽  
Mariëlle C. Haks ◽  
Nadia Caccamo ◽  
Francesco Dieli ◽  
Tom H. M. Ottenhoff ◽  
...  

1983 ◽  
Vol 158 (3) ◽  
pp. 649-669 ◽  
Author(s):  
H Kawanishi ◽  
L Saltzman ◽  
W Strober

Our previous studies indicated that cloned T cells obtained from Peyer's patches (PP) (Lyt-1+, 2-, Ia+, and H-2K/D+) evoked immunoglobulin (Ig) class switching of PP B cells from sIgM to sIgA cells in vitro; however, these switch T cells could not in themselves provide optimal help for the differentiation of postswitch sIgA-bearing PP B cells to IgA-secreting cells. Thus, in the present report we described studies focused on mechanisms regulating terminal differentiation of the postswitch PP sIgA-bearing B cells. First, to explore the effect of T cell-derived B cell differentiation factor(s) (BCDF) and macrophage factor(s) (MF) on the terminal maturation of PP B cells, LPS-stimulated PP B cells were co-cultured for 7 d with cloned T cells in the presence or absence of the above factors. In the absence of PP cloned T cells the BCDF and MF had only a modest effect on IgA production, whereas in the presence of PP, but not spleen cloned T cells, IgA production was increased. Next, to investigate the effect of T cells derived from a gut-associated lymphoid tissue (GALT), mesenteric lymph nodes (MLN), as well as from spleen on terminal differentiation of postswitch sIgA PP B cells, LPS-driven PP B cells were precultured with the cloned T cells to induce a switch to sIgA, and subsequently cultured with MLN or spleen T cells or a Lyt-2+-depleted T cell subset in the presence of a T-dependent polyclonal mitogen, staphylococcal protein A. Alternatively, in the second culture period BCDF alone was added, instead of T cells and protein A. Here it was found that B cells pre-exposed to switch T cells from PP, but not spleen, were induced to produce greatly increased amounts of IgA in the presence of protein A and T cells or a Lyt-2+-depleted T cell subset as well as in the presence of BCDF alone. Furthermore, in the presence of BCDF alone many B cells expressed cytoplasmic IgA. These observations strongly support the view that the terminal differentiation of postswitch sIgA B cells is governed by helper T cells and macrophages, or factors derived from such cells. Such cells or factors do not affect preswitch B cells.


1994 ◽  
Vol 179 (2) ◽  
pp. 413-424 ◽  
Author(s):  
G Dadaglio ◽  
S Garcia ◽  
L Montagnier ◽  
M L Gougeon

We have analyzed the V beta usage by CD4+ and CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals in response to an in vitro stimulation with the superantigenic erythrogenic toxin A (ETA) of Streptococcus pyogenes. ETA amplifies specifically CD4+ and CD8+ T cells from control donors expressing the V beta 8 and the V beta 12 elements. When peripheral T cells from asymptomatic HIV-infected individuals were stimulated with ETA, there was a complete lack of activation of the V beta 8+ T cell subset, whereas the V beta 12+ T cell subset responded normally to the superantigen. This V beta-specific anergy, which was also observed in response to staphylococcal enterotoxin E (SEE), affected both CD4+ and CD8+ T cells and represented an intrinsic functional defect rather than a specific lack of response to bacterial superantigens since it was also observed after a stimulation with V beta 8 monoclonal antibodies. The V beta 8 anergic T cells did not express interleukin 2 receptors (IL-2Rs) and failed to proliferate in response to exogenous IL-2 or IL-4, suggesting that this anergy was not a reversible process, at least by the use of these cytokines. The unresponsiveness of the V beta 8 T cell subset is frequent since it was found in 56% of the patients studied, and comparison of the clinical status of responder vs. anergic patients indicated that the only known common factor between them was HIV infection. In addition, it is noteworthy that the anergy of the V beta 8 subset may be a very early phenomenon since it was found in a patient at Centers for Disease Control stage I of the disease. These data provide evidence that a dominant superantigen may be involved in the course of HIV infection and that the contribution of HIV has to be considered.


Sign in / Sign up

Export Citation Format

Share Document