An Empirical Relationship between Fourier and Response Spectra Using Spectrum-Compatible Times Series

2017 ◽  
Vol 33 (1) ◽  
pp. 179-199 ◽  
Author(s):  
Luis A. Montejo ◽  
Aidcer L. Vidot-Vega

The Fourier amplitude spectrum (FAS) is widely used in seismology and earthquake engineering as it provides valuable information regarding frequency dependent amplitude of the ground motion. However, for structural design and assessment, the preferred representation of seismic hazard continues to be based on the elastic response spectrum. Therefore, conversions between these spectra are often required. In this article, the connection between FAS and the 5% damping pseudo-acceleration response spectrum (5% PSA) is explored using large data sets of spectrum-compatible time series generated from white noise. The strong dependence of the relation between FAS and 5% PSA with strong motion duration is evidenced and a duration dependent empirical relationship between the both spectra is developed. The equation is validated using recorded ground motions and spectrum-compatible time series generated from the modification of these ground motions. The equation allows simpler one-step conversions when compared to iterative approaches based on RVT theory or time-consuming methodologies that require the generation of spectrum-compatible time series.

2001 ◽  
Vol 17 (2) ◽  
pp. 221-234 ◽  
Author(s):  
Anil K. Chopra ◽  
Chatpan Chintanapakdee

A new measure of earthquake demand, the drift spectrum has been developed as an adjunct to the response spectrum, a central concept in earthquake engineering, in calculating the internal deformations of a structure due to near-fault ground motions with pronounced coherent pulses in the velocity and displacement histories. Compared in this paper are certain aspects of the elastic structural response to near-fault and far-fault ground motions. It is demonstrated that (1) the difference between drift and response spectra are not unique to near-fault ground motions; these differences simply reflect higher-mode response, which is larger due to near-fault ground motions; (2) response spectrum analysis (RSA) using existing modal combination rules can provide an estimate of structural response that is accurate to a useful degree; (3) these modal combination rules are similarly accurate for near-fault and far-fault ground motions although the underlying assumptions are not satisfied by near-fault excitations; and (4) RSA is preferable over the drift spectrum in computing structural response because it represents standard engineering practice and is applicable to a wide variety of structures.


2016 ◽  
Vol 10 (04) ◽  
pp. 1650007
Author(s):  
Anat Ruangrassamee ◽  
Chitti Palasri ◽  
Panitan Lukkunaprasit

In seismic design, excitations are usually considered separately in two perpendicular directions of structures. In fact, the two components of ground motions occur simultaneously. This paper clarifies the effects of bi-directional excitations on structures and proposes the response spectra called “bi-directional pseudo-acceleration response spectra”. A simplified analytical model of a two-degree-of-freedom system was employed. The effect of directivity of ground motions was taken into account by applying strong motion records in all directions. The analytical results were presented in the form of the acceleration ratio response spectrum defined as the bi-directional pseudo-acceleration response spectrum normalized by a pseudo-acceleration response spectrum.


1993 ◽  
Vol 83 (3) ◽  
pp. 811-829 ◽  
Author(s):  
Hiroo Kanamori ◽  
Paul C. Jennings ◽  
Shri Krishna Singh ◽  
Luciana Astiz

Abstract We performed simulations of ground motions in Mexico City expected for large earthquakes in the Guerrero seismic gap in Mexico. The simulation method uses as empirical Green's functions the accelerograms recorded in Mexico City during four small to moderate earthquakes (8 Feb. 1988, Ms = 5.8; 25 April 1989, Mw = 6.9; 11 May 1990, Mw = 5.5; and 31 May 1990, Mw = 6.0) in the Guerrero gap. Because these events occurred in the Guerrero gap, and have typical thrust mechanisms, the propagation path and site effects can be accurately included in our simulation. Fault rupture patterns derived from the 1985 Michoacan earthquake and source scaling relations appropriate for Mexican subduction zone earthquakes are used. If the Guerrero event is similar to the 1985 Michoacan event, the resulting response spectrum in Mexico City will be approximately twice as large as that of the 1985 Michoacan earthquake at periods longer than 2 sec. At periods shorter than 2 sec, the amplitude will be 2 to 3 times larger than that for the Michoacan earthquake. If the events in the Guerrero seismic gap occur as a sequence of magnitude 7.5 to 7.8 events, as they did in the previous sequence around the turn of the century, the strong motion in Mexico City is estimated to be about half that experienced during the 1985 Michoacan earthquake at periods longer than 2 sec. However, several factors affect this estimate. The magnitude of the possible events has a significant range and, if a rupture sequence is such that it enhances ground-motion amplitude with constructive interference, as occurred during the second half of the Michoacan sequence, some components of the ground motion could be amplified by a factor of 2 to 3. To aid in the interpretation of the simulated motion for purposes of design or hazard assessment, design spectra for the CDAO site in Mexico City are derived from the response spectra of the simulated ground motions.


1987 ◽  
Vol 3 (2) ◽  
pp. 263-287 ◽  
Author(s):  
N. A. Abrahamson ◽  
B. A. Bolt ◽  
R. B. Darragh ◽  
J. Penzien ◽  
Y. B. Tsai

SMART 1 is the first large digital array of strong-motion seismographs specially designed for engineering and seismological studies of the generation and near-field properties of earthquakes. Since the array began operation in September 1980, it has recorded over 3000 accelerogram traces from 48 earthquakes ranging in local magnitude ( ML) from 3.6 to 7.0. Peak ground accelerations have been recorded up to 0.33g and 0.34g on the horizontal and vertical components, respectively. Epicentral distances have ranged from 3 km 200 km from the array center, and focal depths have ranged from shallow to 100 km. The recorded earthquakes had both reverse and strike-slip focal mechanisms associated with the subduction zone and transform faults. These high quality, digital, ground motions provide a varied resource for earthquake engineering research. Earthquake engineering studies of the SMART 1 ground motion data have led to advances in knowledge in several cases: for example, on frequency-dependent incoherency of free-surface ground motions over short distances, on response of linear systems to multiple support excitations, on attenuation of peak ground-motion parameters and response spectra, on site torsion and phasing effects, and on the identification of wave types. Accelerograms from individual strong-motion seismographs do not, in general, provide such information. This review describes the SMART 1 array and the recorded earthquakes with special engineering applications. Also, it tabulates the unfiltered peak array accelerations, displays some of the recorded ground motion time histories, and summarizes the main engineering research that has made use of SMART 1 data.


2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


Author(s):  
Aidin Tamhidi ◽  
Nicolas Kuehn ◽  
S. Farid Ghahari ◽  
Arthur J. Rodgers ◽  
Monica D. Kohler ◽  
...  

ABSTRACT Ground-motion time series are essential input data in seismic analysis and performance assessment of the built environment. Because instruments to record free-field ground motions are generally sparse, methods are needed to estimate motions at locations with no available ground-motion recording instrumentation. In this study, given a set of observed motions, ground-motion time series at target sites are constructed using a Gaussian process regression (GPR) approach, which treats the real and imaginary parts of the Fourier spectrum as random Gaussian variables. Model training, verification, and applicability studies are carried out using the physics-based simulated ground motions of the 1906 Mw 7.9 San Francisco earthquake and Mw 7.0 Hayward fault scenario earthquake in northern California. The method’s performance is further evaluated using the 2019 Mw 7.1 Ridgecrest earthquake ground motions recorded by the Community Seismic Network stations located in southern California. These evaluations indicate that the trained GPR model is able to adequately estimate the ground-motion time series for frequency ranges that are pertinent for most earthquake engineering applications. The trained GPR model exhibits proper performance in predicting the long-period content of the ground motions as well as directivity pulses.


1996 ◽  
Vol 86 (1B) ◽  
pp. S333-S349 ◽  
Author(s):  
J. P. Bardet ◽  
C. Davis

Abstract During the 1994 Northridge earthquake, the Van Norman Complex yielded an unprecedented number of recordings with high acceleration, in the close proximity of the fault rupture. These strong-motion recordings exhibited the pulses of the main event. One station recorded the largest velocity ever instrumentally recorded (177 cm/sec), resulting from a 0.86 g peak acceleration with a low frequency. Throughout the complex, the horizontal accelerations reached peak values ranging from 0.56 to 1.0 g, except for the complex center, where the peak acceleration did not exceed 0.43 g. The vertical acceleration reached maximum peak values comparable with those of the horizontal acceleration. The acceleration response spectra in the longitudinal and transverse directions were significantly different. Such a difference, which is not yet well documented in the field of geotechnical earthquake engineering, indicates that the amplitude and frequency content of the ground motion was directionally dependent in the Van Norman Complex.


2020 ◽  
Author(s):  
Sreeram Reddy Kotha ◽  
Graeme Weatherill ◽  
Dino Bindi ◽  
Fabrice Cotton

<p>Ground-Motion Models (GMMs) characterize the random distributions of ground-motions for a combination of earthquake source, wave travel-path, and the effected site’s geological properties. Typically, GMMs are regressed over a compendium of strong ground-motion recordings collected from several earthquakes recorded at multiple sites scattered across a variety of geographical regions. The necessity of compiling such large datasets is to expand the range of magnitude, distance, and site-types; in order to regress a GMM capable of predicting realistic ground-motions for rare earthquake scenarios, e.g. large magnitudes at short distances from a reference rock site. The European Strong-Motion (ESM) dataset is one such compendium of observations from a few hundred shallow crustal earthquakes recorded at a several hundred seismic stations in Europe and Middle-East.</p><p>We developed new GMMs from the ESM dataset, capable of predicting both the response spectra and Fourier spectra in a broadband of periods and frequencies, respectively. However, given the clear tectonic and geological diversity of the data, possible regional and site-specific differences in observed ground-motions needed to be quantified; whilst also considering the possible contamination of data from outliers. Quantified regional differences indicate that high-frequency ground-motions attenuate faster with distance in Italy compared to the rest of Europe, as well as systematically weaker ground-motions from central Italian earthquakes. In addition, residual analyses evidence anisotropic attenuation of low frequency ground-motions, imitating the pattern of shear-wave energy radiation. With increasing spatial variability of ground-motion data, the GMM prediction variability apparently increases. Hence, robust mixed-effects regressions and residual analyses are employed to relax the ergodic assumption.</p><p>Large datasets, such as the ESM, NGA-West2, and from KiK-Net, provide ample opportunity to identify and evaluate the previously hypothesized event-to-event, region-to-region, and site-to-site differences in ground-motions. With the appropriate statistical methods, these variabilities can be quantified and applied in seismic hazard and risk predictions. We intend to present the new GMMs: their development, performance and applicability, prospective improvements and research needs.</p>


2018 ◽  
Vol 34 (4) ◽  
pp. 1913-1930 ◽  
Author(s):  
Irmela Zentner

The random vibration theory offers a framework for the conversion of response spectra into power spectral densities (PSDs) and vice versa. The PSD is a mathematically more suitable quantity for structural dynamics analysis and can be straightforwardly used to compute structural response in the frequency domain. This allows for the computation of in-structure floor response spectra and peak responses by conducting only one structural analysis. In particular, there is no need to select or generate spectrum-compatible time histories to conduct the analysis. Peak response quantities and confidence intervals can be computed without any further simplifications such as currently used in the response spectrum method, where modal combination rules have to be derived. In contrast to many former studies, the Arias intensity-based definition of strong-motion duration is adopted here. This paper shows that, if the same definitions of strong-motion duration and modeling assumptions are used for time history and RVT computations, then the same result can be expected. This is illustrated by application to a simplified model of a reactor building.


2020 ◽  
Vol 110 (6) ◽  
pp. 2755-2765
Author(s):  
Cuihua Li ◽  
Guofeng Xue ◽  
Zhanxuan Zuo

ABSTRACT Idealization of acceleration response spectra is the basis for construction of target spectra for seismic design and assessment of structures. The adequacy of current methods to reasonably idealize (or smooth) the acceleration spectra of pulse-like and nonpulse-like ground motions is examined in this study. The influence of separated pulses on different regions of acceleration response spectrum is first investigated using wavelet transform. One representative method is selected as the benchmark to examine the effectiveness of the Newmark–Hall-based methods to smooth the acceleration spectra of pulse-like and nonpulse-like ground motions. Presented are some important insights into why the plateau (or amplification factor) associated with the constant-acceleration branch may be underestimated and the ending cutoff period Tg be overestimated by Newmark–Hall-based methods. This study highlights the intrinsic characteristics and the importance of the constant-acceleration branch, based on which a two-step procedure is proposed to idealize the acceleration spectra. The results show that the proposed methodology can accurately identify the constant-acceleration branch regardless of the influence of pulses on the descending branch of acceleration spectra.


Sign in / Sign up

Export Citation Format

Share Document