Observed Variation of Earthquake Motion across a Basin—Taipei City

1998 ◽  
Vol 14 (1) ◽  
pp. 115-133 ◽  
Author(s):  
Chin-Hsiung Loh ◽  
Jeng-Yaw Hwang ◽  
Tzay-Chyn Shin

Local site amplification of sedimentary deposit during earthquakes is an important issue in strong ground motion analysis. The phenomenon is more obvious for sediment basin. From the strong-motion instrumentation network of Taipei basin, the ground motion characteristics of the basin effects are studied from two seismic events: the June 5, 1994 earthquake with ML = 6.57 and the June 25, 1995 earthquake with ML = 6.50. The objective is to investigate the effects of the basin structure on the patterns of the recorded ground motions. The analyses include: (1) response spectrum and spectral ratio analyses; (2) correlation of seismic source, PGA distribution and strong-motion duration with site amplification, (3) principal direction analysis of seismic waves in the basin. The observed variations of ground motion across the basin are different from each other because of the basin effect. It means that for the Taipei basin, the basin effects for shallow sources are going to be much more significant than for the deep sources.

Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 186
Author(s):  
Alessandro Todrani ◽  
Giovanna Cultrera

On 24 August 2016, a Mw 6.0 earthquake started a damaging seismic sequence in central Italy. The historical center of Amatrice village reached the XI degree (MCS scale) but the high vulnerability alone could not explain the heavy damage. Unfortunately, at the time of the earthquake only AMT station, 200 m away from the downtown, recorded the mainshock, whereas tens of temporary stations were installed afterwards. We propose a method to simulate the ground motion affecting Amatrice, using the FFT amplitude recorded at AMT, which has been modified by the standard spectral ratio (SSR) computed at 14 seismic stations in downtown. We tested the procedure by comparing simulations and recordings of two later mainshocks (Mw 5.9 and Mw 6.5), underlining advantages and limits of the technique. The strong motion variability of simulations was related to the proximity of the seismic source, accounted for by the ground motion at AMT, and to the peculiar site effects, described by the transfer function at the sites. The largest amplification characterized the stations close to the NE hill edge and produced simulated values of intensity measures clearly above one standard deviation of the GMM expected for Italy, up to 1.6 g for PGA.


2021 ◽  
Author(s):  
Eser Çakti ◽  
Karin Sesetyan ◽  
Ufuk Hancilar ◽  
Merve Caglar ◽  
Emrullah Dar ◽  
...  

<p>The Mw 6.9 earthquake that took place offshore between the Greek island of Samos and Turkey’s İzmir province on 30 October 2020 came hardly as a surprise. Due to the extensional tectonic regime of the Aegean and high deformation rates, earthquakes of similar size frequently occur in the Aegean Sea on fault segments close to the shores of Turkey, affecting the settlements on mainland Turkey and on the Greek Islands. Samos-Sigacik earthquake had a normal faulting mechanism. It was recorded by the strong motion networks in Turkey and Greece. Although expected, the earthquake was an  outstanding event in the sense of  highly localized, significant levels of building damage as a result of amplified ground motion levels. This presentation is an overview of strong ground motion characteristics of this important event both regionally and locally. Mainshock records suggest that local site effects, enhanced by basin effects could be responsible for structural damage in central Izmir, the third largest city of Turkey located at 60-70 km epicentral distance. We installed a seven-station network in Bayraklı and Karşıyaka districts of İzmir within three days of the mainshock in search of site and basin effects.  Through analysis of recorded aftershocks we explore the amplification characeristics of soils in the two aforementioned districts  and try to understand the role basin effects might have played in the resulting ground motion levels and consequently damage. </p>


Author(s):  
Athanasius Cipta ◽  
Phil Cummins ◽  
Masyhur Irsyam ◽  
Sri Hidayati

We use earthquake ground motion modelling via Ground Motion Prediction Equations (GMPEs) and numerical simulation of seismic waves to consider the effects of site amplification and basin resonance in Jakarta, the capital city of Indonesia. While spectral accelerations at short periods are sensitive to near-surface conditions (i.e., Vs30), our results suggest that, for basins as deep as Jakarta’s, available GMPEs cannot be relied upon to accurately estimate the effect of basin depth on ground motions at long periods (>1 s). Amplitudes at such long periods are influenced by entrapment of seismic waves in the basin, resulting in longer duration of strong ground motion, and interference between incoming and reflected waves as well as focusing at basin edges may amplify seismic waves. In order to simulate such phenomena in detail, a basin model derived from a previous study is used as a computational domain for deterministic earthquake scenario modeling in a 2-dimensional cross-section. A Mw 9.0 megathrust, a Mw 6.5 crustal thrust and a Mw 7.0 instraslab earthquake are chosen as scenario events that pose credible threats to Jakarta, and the interactions with the basin of seismic waves generated by these events were simulated. The highest PGV amplifications are recorded at sites near the middle of the basin and near its southern edge, with maximum amplifications of PGV in the horizontal component of 200% for the crustal, 600% for the megathrust and 335% for the deep intraslab earthquake scenario, respectively. We find that the levels of ground motion response spectral acceleration fall below those of the 2012 Indonesian building Codes's design response spectrum for short periods (< 1 s), but closely approach or may even exceed these levels for longer periods.


1991 ◽  
Vol 7 (4) ◽  
pp. 551-561 ◽  
Author(s):  
Antonio Rovelli ◽  
Shri K. Singh ◽  
Luca Malagnini ◽  
Alessandro Amato ◽  
Massimo Cocco

We explore the feasibility of the use of microtremors in estimating the amplification of seismic waves at soft sites in Italy. Microtremors were measured at three soft sites and nearby hard sites at night when the cultural noise was minimum. These soft sites were selected as those showing the largest amplifications of ground motion during earthquakes as compared to the records on the hard sites or with respect to the predicted spectra. We compare the soft-to-hard site microtremor spectral ratios with the corresponding acceleration spectral ratios. A rough estimate of the shape and level of spectral amplification is obtained from the microtremor data in all three cases. However, the details of the soft-to-hard site spectral ratio are not reproduced and some differences appear in (a) the frequency at which the maximum amplification occurs, and (b) the bandwidth of the significant amplification. More testing of the method is needed before its wider use for microzonation in Italy can be recommended.


1973 ◽  
Vol 63 (3) ◽  
pp. 1025-1039
Author(s):  
Bruce M. Douglas ◽  
Thomas E. Trabert

abstract The coupled bending and torsional vibrations of a relatively symmetric 22-story reinforced concrete building in Reno, Nevada are studied. Analytical results are compared with observations obtained during the nuclear explosion FAULTLESS and to ambient vibration data. The fundamental periods of vibration observed during FAULTLESS were (TNS = 1.42, TEW = 1.81, TTORSION = 1.12 sec), and the calculated periods were (TNS = 2.14, TEW = 2.07, TTORSION = 1.90 sec). It was estimated that between 25 and 45 per cent of the total available nonstructural stiffness was required to explain the differences in the observed and calculated fundamental periods. Each floor diaphragm in the system was allowed three degrees of freedom-two translations and a rotation. It was found that coupled torsional motions can influence the response of structural elements near the periphery of the structure. Strong-motion structural response calculations comparing the simultaneous use of both components of horizontal ground motion to a single component analysis showed that the simultaneous application of both components of ground motion can significantly alter the response of lateral load-carrying elements. Differences of the order of 45 per cent were observed in the frames near the ends of the structure. Also, it was shown that the overall response of tall buildings is sensitive not only to the choice of input ground motion but also to the orientation of the structure with respect to the seismic waves.


2021 ◽  
Author(s):  
Olga-Joan Ktenidou ◽  
Faidra Gkika ◽  
Erion-Vasilis Pikoulis ◽  
Christos Evangelidis

<p>Although it is nowadays desirable and even typical to characterise site conditions in detail at modern recording stations, this is not yet a general rule in Greece, due to the large number and geographical dispersion of stations. Indeed, most of them are still characterised merely through geological descriptions or proxy-based parameters, rather than through in-situ measurements. Considering: 1. the progress made in recent years with sophisticated ground motion models and the need to define region-specific rock conditions based on data, 2. the move towards large open-access strong-motion databases that require detailed site metadata, and 3. that Greek-provenance recordings represent a significant portion of European seismic data, there are many reasons to improve our understanding of site response at these stations. Moreover, it has been shown recently in several regions that even sites considered as rock can exhibit amplification and ground motion variability, which has given rise to more scientific research into the definition of reference sites. For Greece, in-situ-characterisation campaigns for the entire network would impose unattainable time/budget constraints; so, instead, we implement alternative empirical approaches using the recordings themselves, such as the horizontal-to-vertical spectral ratio technique and its variability. We present examples of 'well-behaved', typical rock sites, and others whose response diverges from what is assumed for their class.</p><p> </p>


2020 ◽  
Vol 110 (6) ◽  
pp. 2892-2911
Author(s):  
Eri Ito ◽  
Kenichi Nakano ◽  
Fumiaki Nagashima ◽  
Hiroshi Kawase

ABSTRACT The main purpose of the site classification or velocity determination at a target site is to obtain or estimate the horizontal site amplification factor (HSAF) at that site during future earthquakes because HSAF would have significant effects on the strong-motion characteristics. We have been investigating various kinds of methods to delineate the S-wave velocity structures and the subsequent HSAF, as precisely as possible. After the advent of the diffuse field concept, we have derived a simple formula based on the equipartitioned energy density observed in the layered half-space for incident body waves. In this study, based on the diffuse field concept, together with the generalized spectral inversion technique (GIT), we propose a method to directly estimate the HSAF of the S-wave portion from the horizontal-to-vertical spectral ratio of earthquakes (eHVSRs). Because the vertical amplification is included in the denominator of eHVSR, it cannot be viewed as HSAF without correction. We used GIT to determine both the HSAF and the vertical site amplification factor (VSAF) simultaneously from strong-motion data observed by the networks in Japan and then deduced the log-averaged vertical amplification correction function (VACF) from VSAFs at a total of 1678 sites in which 10 or more earthquakes have been observed. The VACF without a category has a constant amplitude of about 2 in the frequency range from 1 to 15 Hz. By multiplying eHVSR by VACF, we obtained the simulated HSAF. We verified the effectiveness of this correction method using data from observation sites not used in the aforementioned averaging in the frequency range from 0.12 to 15 Hz.


2020 ◽  
Vol 110 (2) ◽  
pp. 534-555 ◽  
Author(s):  
Mika Thompson ◽  
Erin A. Wirth ◽  
Arthur D. Frankel ◽  
J. Renate Hartog ◽  
John E. Vidale

ABSTRACT Sedimentary basins in the Puget Sound region, Washington State, increase ground-motion intensity and duration of shaking during local earthquakes. We analyze Pacific Northwest Seismic Network and U.S. Geological Survey strong-motion recordings of five local earthquakes (M 3.9–6.8), including the 2001 Nisqually earthquake, to characterize sedimentary basin effects within the Seattle and Tacoma basins. We observe basin-edge generated surface waves at sites within the Seattle basin for most ray paths that cross the Seattle fault zone. We also note previously undocumented basin-edge surface waves in the Tacoma basin during one of the local earthquakes. To place quantitative constraints on basin amplification, we determine amplification factors by computing the spectral ratios of inside-basin sites to outside-basin sites at 1, 2, 3, and 5 s periods. Ground shaking is amplified in the Seattle basin for all the earthquakes analyzed and for a subset of events in the Tacoma basin. We find that the largest amplification factors in the Seattle basin are produced by a shallow earthquake located to the southwest of the basin. Our observation suggests that future shallow crustal and megathrust earthquakes rupturing west of the Puget Lowland will produce greater amplification within the Seattle basin than has been seen for intraslab events. We also perform ground-motion simulations using a finite-difference method to validate a 3D Cascadia velocity model (CVM) by comparing properties of observed and synthetic waveforms up to a frequency of 1 Hz. Basin-edge effects are well reproduced in the Seattle basin, but are less well resolved in the Tacoma basin. Continued study of basin effects in the Tacoma basin would improve the CVM.


2020 ◽  
Author(s):  
Chun-Hsiang Kuo ◽  
Shu-Hsien Chao ◽  
Che-Min Lin ◽  
Jyun-Yan Huang ◽  
Kuo-Liang Wen

<p>Site amplification behavior are important in ground motion prediction. Seismic waves were amplified and caused significant building damages in the Taipei Basin by the 1986 Hualien offshore (subduction interface) and the 1999 Chi-Chi earthquakes (crustal), for which both of the epicentral distances were nearly 100 km. To understand local site amplifications in Taiwan, empirical site amplification factors for both horizontal and vertical ground motions are studied using recently constructed strong motion and site databases for the free-field TSMIP stations. Records of large magnitude earthquakes of M<sub>W</sub> larger than 5.5 from 1991 to 2016 were selected for this study. Site amplification factors at site conditions with Vs30 between 120 m/s to 1600 m/s and bedrock accelerations up to 0.8 g were evaluated using ratios of spectral accelerations at different periods. The reference site condition, i.e. the engineering bedrock, is assumed as Vs30 of 760 m/s (B/C boundary) in this study. Our empirical site amplification form are borrowed from the site response function of ASK14 and CY14 ground motion models in NGA-West2 project with slight modification. Therefore our site amplification model includes a linear amplification term and a nonlinear deamplification term. The coefficients of the empirical models were obtained by a nonlinear regression analysis using the selected Taiwan data. Site amplification factor is a function of Vs30 and spectral intensity in the model. Similar linear site amplification factor to the NGA models is derived in our model; however, more significant soil nonlinearity behavior than the NGA models is likely captured from the empirical data. The amplification factor in vertical component is smaller than that in horizontal.</p>


Sign in / Sign up

Export Citation Format

Share Document