scholarly journals Basin Resonance and Seismic Hazard for Jakarta, Indonesia

Author(s):  
Athanasius Cipta ◽  
Phil Cummins ◽  
Masyhur Irsyam ◽  
Sri Hidayati

We use earthquake ground motion modelling via Ground Motion Prediction Equations (GMPEs) and numerical simulation of seismic waves to consider the effects of site amplification and basin resonance in Jakarta, the capital city of Indonesia. While spectral accelerations at short periods are sensitive to near-surface conditions (i.e., Vs30), our results suggest that, for basins as deep as Jakarta’s, available GMPEs cannot be relied upon to accurately estimate the effect of basin depth on ground motions at long periods (>1 s). Amplitudes at such long periods are influenced by entrapment of seismic waves in the basin, resulting in longer duration of strong ground motion, and interference between incoming and reflected waves as well as focusing at basin edges may amplify seismic waves. In order to simulate such phenomena in detail, a basin model derived from a previous study is used as a computational domain for deterministic earthquake scenario modeling in a 2-dimensional cross-section. A Mw 9.0 megathrust, a Mw 6.5 crustal thrust and a Mw 7.0 instraslab earthquake are chosen as scenario events that pose credible threats to Jakarta, and the interactions with the basin of seismic waves generated by these events were simulated. The highest PGV amplifications are recorded at sites near the middle of the basin and near its southern edge, with maximum amplifications of PGV in the horizontal component of 200% for the crustal, 600% for the megathrust and 335% for the deep intraslab earthquake scenario, respectively. We find that the levels of ground motion response spectral acceleration fall below those of the 2012 Indonesian building Codes's design response spectrum for short periods (< 1 s), but closely approach or may even exceed these levels for longer periods.

Author(s):  
Ichiro Ichihashi ◽  
Akira Sone ◽  
Arata Masuda ◽  
Daisuke Iba

In this paper, a number of artificial earthquake ground motions compatible with time-frequency characteristics of recorded actual earthquake ground motion as well as the given target response spectrum are generated using wavelet transform. The maximum non-dimensional displacement of elasto-plastic structures excited these artificial earthquake ground motions are calculated numerically. Displacement response, velocity response and cumulative input energy are shown in the case of the ground motion which cause larger displacement response. Under the given design response spectrum, a selection manner of generated artificial earthquake ground motion which causes lager maximum displacement response of elasto-plastic structure are suggested.


2001 ◽  
Vol 09 (04) ◽  
pp. 1561-1581 ◽  
Author(s):  
ENRICO PRIOLO

The application of the 2-D Chebyshev spectral element method (SPEM) to engineering seismology problems is reviewed in this paper. The SPEM is a high-order finite element technique which solves the variational formulation of the seismic wave propagation equations. The computational domain is discretised into an unstructured grid composed by irregular quadrilateral elements. This property makes the SPEM particularly suitable to compute numerically accurate solutions of the full wave equations in complex media. The earthquake is simulated following an approach that can be considered "global", that is all the factors influencing the wave propagation — source, crustal heterogeneity, fine details of the near-surface structure, and topography — are taken into account and solved simultaneously. The basic earthquake source is represented by a 2-D point double couple model. Ruptures propagating along fault segments placed on the model plane are simulated as a finite summation of elementary point sources. After a general introduction, the paper first gives an overview of the method; then it concentrates on some methodological topics of interest for practical applications, such as quadrangular mesh generation, source definition and scaling, numerical accuracy and computational efficiency. Limitations and advantages of using a 2-D approach, although sophisticated such as the SPEM, are addressed, as well. The effectiveness of the method is illustrated through two case histories, i.e. the ground shaking prediction in Catania (Sicily, Italy) for a catastrophic earthquake, and the analysis of the ground motion in the presence of a massive structure.


2015 ◽  
Vol 31 (2) ◽  
pp. 617-635 ◽  
Author(s):  
Gang Wang ◽  
Robert Youngs ◽  
Maurice Power ◽  
Zhihua Li

The Design Ground Motion Library (DGML) is an interactive tool for selecting earthquake ground motion time histories based on contemporary knowledge and engineering practice. It was created from a ground motion database that consists of 3,182 records from shallow crustal earthquakes in active tectonic regions rotated to fault-normal and fault-parallel directions. The DGML enables users to construct design response spectra based on Next-Generation Attenuation (NGA) relationships, including conditional mean spectra, code spectra, and user-specified spectra. It has the broad capability of searching for time history record sets in the database on the basis of the similarity of a record's response spectral shape to a design response spectrum over a user-defined period range. Selection criteria considering other ground motion characteristics and user needs are also provided. The DGML has been adapted for online application by the Pacific Earthquake Engineering Research Center (PEER) and incorporated as a beta version on the PEER database website.


2012 ◽  
Vol 490-495 ◽  
pp. 1826-1830
Author(s):  
Yun Zhang ◽  
Pin Tan ◽  
Xiao Rong Zhou

Analyzed the importance of selecting reasonably ground motion input in seismic fragility analysis of the bridge. Based on the common methods of synthesis artificial seismic wave which used trigonometric series and according to the characters of Fourier series, extracted phase spectrum from practical seismic waves ,through modulating the Fourier amplitude spectrum, obtained the artificial seismic wave which fitted compatible with the design response spectrum. Similar to nature small earthquake records, it has the character of non-stationary on time-domain and frequency-domain. Synthesize a series of artificial seismic waves in this method, can improve the accuracy and pertinence of the bridge seismic fragility.


2013 ◽  
Vol 353-356 ◽  
pp. 2301-2304
Author(s):  
Fan Wu ◽  
Ming Wang ◽  
Xin Yuan Yang

High-rise buildings, as a result of rapid urbanization in China, become one of popular structure kind. However, there have been few seismic vulnerability studies on high-rise buildings, and few fragility curves have been developed for the buildings. Based on the published data of more than 50 high rises and super high rises, the structural information such as building heights, mode periods, locations and sites, the maximum design story drift ratios, are collected and analyzed. The vulnerability analysis for high rises uses response spectrum displacement as seismic ground motion input, since the structures have comparatively long natural period. Using statistics and regression analysis, the relationship between the maximum story drift ratio and response spectrum displacement is established. Based on height groups and earthquake design codes, the fragility curves of different performance levels can be developed. These curves can provide good loss estimation of high rise structural damage under earthquake ground motion.


Author(s):  
Pentti Varpasuo ◽  
Jukka Kähkönen

The paper will describe the following analysis of Loviisa plant’s spent fuel pools. As a consequence of stress tests for the existing NPP’s in Finland after the experiences gathered from the Tohoku -Taheiyou-Oki event in Japan in March of this year Fortum Power and Heat Oy (Fortum) has initiated the following analyses of the Loviisa power plant’s refueling pools and spent fuel intermediate storage pools for the combined cooling loss and the earthquake loads. The following loads will be analyzed: 1) The spent fuel pool and refueling pools water temperature is 100 degrees Celsius. The heat load duration is undetermined; 2) The earthquake ground motion applied simultaneously with the thermal load is defined as follows: (ground motion response spectrum is defined in Guide YVL 2.6), the maximum horizontal acceleration is assumed to be 0.1g, 0.2g, 0.3g and 0.4g, respectively; 3) Own weight; 4) The pool of water, hydrostatic pressure load plus the sloshing load because of earthquake motion. Te analysis is aimed to demonstrate the structural integrity and leak-tightness of the pools under the effect of above loads. The analysis is nonlinear taking into account the cracking of the concrete. As a result of the analysis the maximum strains will be determined in the pool stainless steel liner as well in the pool concrete walls.


2020 ◽  
Vol 110 (6) ◽  
pp. 2862-2881
Author(s):  
Arthur J. Rodgers ◽  
Arben Pitarka ◽  
Ramesh Pankajakshan ◽  
Bjorn Sjögreen ◽  
N. Anders Petersson

ABSTRACT Large earthquake ground-motion simulations in 3D Earth models provide constraints on site-specific shaking intensities but have suffered from limited frequency resolution and ignored site response in soft soils. We report new regional-scale 3D simulations for moment magnitude 7.0 scenario earthquakes on the Hayward Fault, northern California with SW4. Simulations resolved significantly broader band frequencies (0–10 Hz) than previous studies and represent the highest resolution simulations for any such earthquake to date. Seismic waves were excited by a kinematic rupture following Graves and Pitarka (2016) and obeyed wave propagation in a 3D Earth model with topography from the U.S. Geological Survey (USGS) assuming a minimum shear wavespeed, VSmin, of 500  m/s. We corrected motions for linear and nonlinear site response for the shear wavespeed, VS, from the USGS 3D model, using a recently developed ground-motion model (GMM) for Fourier amplitude spectra (Bayless and Abrahamson, 2018, 2019a). At soft soil locations subjected to strong shaking, the site-corrected intensities reflect the competing effects of linear amplification by low VS material, reduction of stiffness during nonlinear deformation, and damping of high frequencies. Sites with near-surface VS of 500  m/s or greater require no linear site correction but can experience amplitude reduction due to nonlinear response. Averaged over all sites, we obtained reasonable agreement with empirical ergodic median GMMs currently used for seismic hazard and design ground motions (epsilon less than 1), with marked improvement at soft sedimentary sites. At specific locations, the simulated shaking intensities show systematic differences from the GMMs that reveal path and site effects not captured in these ergodic models. Results suggest how next generation regional-scale earthquake simulations can provide higher spatial and frequency resolution while including effects of soft soils that are commonly ignored in scenario earthquake ground-motion simulations.


2011 ◽  
Vol 378-379 ◽  
pp. 306-309
Author(s):  
Ping Li ◽  
Jing Shan Bo ◽  
Xiao Yun Guo ◽  
You Wei Sun ◽  
Yu Dong Zhang

Regarding the design response spectrum in the code for seismic design of buildings as target spectra,the 28 acceleration histories are formed artificially.They are used as the inputs ground motion in earthquake response analysis.Four site classifications profiles were selected or constructed from practical site profiles.With the use of 1-D equivalent linearization wave motion method that is wildly used at present in site seismic response analysis, the platform values of surface response spectrum for different profiles under different ground motion inputs were calculated.Different platform values of the response spectrum and relational expression which is seven input earthquake motion intensity and site classifications have been given by statistical analysis.


2013 ◽  
Vol 438-439 ◽  
pp. 1471-1473
Author(s):  
Gong Lian Chen ◽  
Wen Zheng Lu ◽  
Lei Wang ◽  
Qi Wu

In order to study the far-field ground motion characteristics and the attenuation of seismic waves, the peak ground acceleration (velocity, displacement), time of duration and response spectrum of the seismic waves were analyzed in this paper. Through the investigation of earthquake wave propagation process, the seismic attenuation low was analyzed. This study can provide technical support for the seismic design of long period structures and related engineering application.


Sign in / Sign up

Export Citation Format

Share Document