New Provisions for the Seismic Design of Composite and Hybrid Structures

2000 ◽  
Vol 16 (1) ◽  
pp. 163-178 ◽  
Author(s):  
Gregory G. Deierlein

While there have been significant advances in the design and construction of composite steel-concrete building structures, their use in regions of high seismicity has been hindered by the lack of design criteria in building codes and specifications. This has prompted initiatives in the Building Seismic Safety Council and the American Institute of Steel Construction to develop seismic design provisions for composite structures. The 1997 edition of the AISC Seismic Provisions includes a new section with requirements for composite steel-concrete structures that are cross-referenced by the general seismic loading and design criteria in the 1997 NEHRP Provisions and the 2000 International Building Code (final draft). Intended to complement existing provisions for steel, reinforced concrete and composite structures in the AISC-LRFD Specification and the ACI 318 Building Code, these new provisions provide an important resource for seismic design of composite structural systems, members, and connections.

2021 ◽  
Vol 885 ◽  
pp. 127-132
Author(s):  
Sarmad Shakeel ◽  
Alessia Campiche

The current edition of Eurocode 8 does not cover the design of the Cold-Formed steel (CFS) building structures under the seismic design condition. As part of the revision process of Euro-code 8 to reflect the outcomes of extensive research carried out in the past decade, University of Naples “Federico II” is involved in the validation of existing seismic design criteria and development of new rules for the design of CFS systems. In particular, different types of Lateral Force Resisting System (LFRS) are analyzed that can be listed in the second generation of Eurocode 8. The investigated LFRS’s include CFS strap braced walls and CFS shear walls with steel sheets, wood, or gypsum sheathing. This paper provides the background information on the research works and the reference design standards, already being used in some parts of the world, which formed the basis of design criteria for these LFRS systems. The design criteria for the LFRS-s common to CFS buildings would include rules necessary for ensuring the dissipative behavior, appropriate values of the behavior factor, guidelines to predict the design strength, geometrical and mechanical limitations.


1997 ◽  
Vol 13 (3) ◽  
pp. 489-504
Author(s):  
Tom Spector

Most research in the ongoing effort to improve building seismic safety has been devoted to improving building code methodology by refining the techniques of analysis and prediction of seismic forces. This agenda has left little room for the observation that how the code is regarded and interpreted by structural designers may have as much to do with overall seismic safety as do the code's written provisions. The purpose of this investigation is to look at both how the seismic code is viewed by practicing professional engineers and explore a range of ethical dilemmas entailed by interpreting the code. In conclusion, a case is made to consider interpretation of the seismic code to be an ethical, as well as technical matter; one that can be successfully addressed by a community of professionals acting together.


2009 ◽  
Vol 25 (4) ◽  
pp. 869-898 ◽  
Author(s):  
Arturo Tena-Colunga ◽  
Ulises Mena-Hernández ◽  
LuisEduardo Pérez-Rocha ◽  
Javier Avilés ◽  
Mario Ordaz ◽  
...  

The Manual of Civil Structures (MOC), a model design code in Mexico, has been in the process of being updated, and the new version of this code was published in 2008. A major update from the 1993 version was performed in the chapter for the seismic design of building structures. This paper summarizes the most relevant changes of this building code and their relation to research efforts conducted within Mexico and worldwide to improve the seismic design of building structures. One goal is to make the guidelines as transparent as possible to users, so that the design process will be clearer to structural engineers.


Author(s):  
Thomas W. Houston ◽  
Greg E. Mertz ◽  
Andrew Maham

One graded approach for the design of nuclear facilities would design high hazard facilities to meet the provisions of ASCE 43 while low hazard facilities would be designed as conventional structures based on the seismic loading and design criteria in ASCE 7. In structures with an intermediate hazard it is not immediately obvious which standard provides a more conservative design. This paper presents a case study that compares the performance of an intermediate hazard structure with ASCE 7 seismic loading and criteria to the target performance goals described in ASCE 43 and DOE-STD-1020. The purposes of seismic design associated with ASCE 7 are; 1) to provide minimum design criteria for structures appropriate to their primary function and use considering the need to protect the health, safety, and welfare of the general public by minimizing the earthquake-related risk to life, and 2) to improve the capability of essential facilities and structures containing substantial quantities of hazardous materials to function during and after design earthquakes. Designs developed using the provisions of ASCE 7 are targeted to a collapse prevention limit state probability of 1% in 50 years. The goal of the earthquake provisions in ASCE 43 is to ensure that high hazard nuclear facilities can withstand the effects of earthquakes with desired performance, expressed as probabilistic Target Performance Goals and various limit, or damage, states. These Target Performance Goals range from 1×10−4 to 1×10−5 with limit states ranging from essentially linear response to short of collapse. There are requirements invoked by ASCE 7 that are different than the requirements of ASCE 43 which prevents a direct computation of performance based on comparing the seismic demand levels required by each standard. These differences include the use of building R values in ASCE 7 compared to component specific Fu values in ASCE 43, the use of different analyses methods, ASCE 7 upper bound limits on seismic forces for some components, the limitations on framing system types, among others. The effect of these differences on the performance achieved between the two standards is evaluated for the design of a reinforced concrete shear wall structure that is representative of the types of structures used in nuclear facilities.


2003 ◽  
Author(s):  
R. Park ◽  
F. Watanabe ◽  
S. M. Alcocer ◽  
T. Boen ◽  
P. Bonelli ◽  
...  

Author(s):  
Charles A. Kircher

The United States contains regions of greatly varying seismicity ranging from a relatively narrow strip of very high seismicity along coastal California in the West to broad areas of low or moderate seismicity typical of the Central and Eastern United States. The United States currently has three major regional model building codes. While all three codes have traditionally used the concept of seismic zones to identify and distinguish between regions of different seismicity, they have not had a consistent basis for their seismic criteria. Beginning in the year 2000, the three model building codes will merge and become the new International Building Code (IBC) applicable to the whole United States. New seismic design criteria have been developed for the 2000 IBC that now define ground shaking for building design by spectral acceleration contours. This paper describes the background and basis for the new seismic design criteria of the 2000 IBC, and how these criteria address the large variation in seismic hazard across the United States.


2012 ◽  
Vol 28 (1_suppl1) ◽  
pp. 349-384 ◽  
Author(s):  
S. K. Ghosh ◽  
Ned M. Cleland

The Precast/Prestressed Concrete Institute (PCI) sent an assessment team to Chile, which visited the areas affected by the 27 February 2010 earthquake between 26 and 30 April 2010. This paper reports on the team's observations on the performance of precast/prestressed concrete structures. The precast concrete building systems observed by the PCI team generally performed well. In some cases, the lateral force-resisting system performed satisfactorily, but the absence or weakness of diaphragm framing resulted in local failures. Overall, the PCI team found a mature and sophisticated precast concrete industry that has successfully considered and solved issues of earthquake resistance without some of the constraints imposed on U.S. practice by restrictive building code provisions.


2007 ◽  
Vol 133 (11) ◽  
pp. 1604-1615 ◽  
Author(s):  
Mario E. Rodriguez ◽  
José I. Restrepo ◽  
John J. Blandón

2019 ◽  
Vol 97 ◽  
pp. 02022
Author(s):  
Viktor Sopov ◽  
Julia Danchenko ◽  
Ekaterina Latorez

Specification of corrosion processes in sewerage networks, the predominant role of microbiological processes in them requires the protection of concrete with materials resistant to specific biogenic sulfuric acid aggression. The effective protective materials, in this case, are those that, in addition to acid-proofing materials, have bactericidal properties. Polymer composite materials (PCM) of cold curing based on modified epoxy-resin, resins with dispersed oxides as fillers are widely used in construction. Unique properties and simple technologies make it possible to use them as injection formulations for repair, restoration and restoration of building structures and structures, waterproofing and facing materials, for impregnating, gluing and coating metal, wooden, brick and concrete building structures and parts. In the reconstruction and restoration of sewerage collectors operating under conditions of exposure to liquid biochemically aggressive media with mineral acids and organic substances, particular attention is paid to the permeability of repair materials. Based on the results of the study, PCM compositions were chosen whose estimated lifetime is about 20 years, ensuring reliable protection of the sewage collectors from corrosion.


Sign in / Sign up

Export Citation Format

Share Document