Tsunami Hazards Associated with the Catalina Fault in Southern California

2004 ◽  
Vol 20 (3) ◽  
pp. 917-950 ◽  
Author(s):  
Mark R. Legg ◽  
Jose C. Borrero ◽  
Costas E. Synolakis

We investigate the tsunami hazard associated with the Catalina Fault offshore of southern California. Realistic faulting parameters are used to match coseismic displacements to existing sea floor topography. Several earthquake scenarios with moment magnitudes ranging between 7.0 and 7.6 are used as initial conditions for tsunami simulations, which predict runup of up to 4 m. Normalizing runup with the maximum uplift identifies areas susceptible to tsunami focusing and amplification. Several harbors and ports in southern California lie in areas where models predict tsunami amplification. Return periods are estimated by dividing the modeled seafloor uplift per event by the observed total uplift of the Santa Catalina Island platform multiplied by the time since the uplift began. The analysis yields return periods between 2,000 to 5,000 years for the Catalina Fault alone, and 200 to 500 years when all offshore faults are considered.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Milton S. Love ◽  
Mary M. Nishimoto ◽  
Linda Snook ◽  
Donna M. Schroeder ◽  
Ann Scarborough Bull

Increasing reliance on deep-water renewable energy has increased concerns about the effects of the electromagnetic fields (EMFs) generated by submarine power cables on aquatic organisms. Off southern California, we conducted surveys of marine organisms living around energized and unenergized submarine power cables and nearby sea floor during 2012–2014 at depths between 76 and 213 m. In general, EMFs declined to background levels about one meter from the cable. We found no statistical difference in species composition between the fish assemblages along the energized and unenergized cables. The natural habitat community statistically differed from both energized and unenergized cable communities. Within species (or species groups), we found no differences in densities between energized and unenergized cables. Total fish densities were significantly higher around the cables than over the natural habitat. We found that invertebrate communities were structured by habitat type and depth and, similar to the fishes, there was no statistical difference between the energized and unenergized cables. Individually, the densities of four invertebrate species or species groups (Metridium farcimen, Luidia spp., unidentified black Crinoidea, and Urticina spp.) differed between energized and unenergized cables, but this difference was not significant across all depth strata. The invertebrate community inhabiting the natural habitat strongly differed from the energized and unenergized cable community exhibiting the fewest species and individuals.


2014 ◽  
Vol 14 (11) ◽  
pp. 3105-3122 ◽  
Author(s):  
N. Horspool ◽  
I. Pranantyo ◽  
J. Griffin ◽  
H. Latief ◽  
D. H. Natawidjaja ◽  
...  

Abstract. Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500–2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1–10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1–1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.


2020 ◽  
Author(s):  
Jochen Woessner ◽  
Rozita Jalali Farahani

<p>A series of large subduction interface earthquakes along the South American coast caused large tsunamis in recent years. Each of these events, such as the 2010 Mw8.8 Maule and the 2015 Mw8.3 Illapel events, provided novel insights to improve tsunami hazard and risk modeling for the region, in particular due to the amount of data collected during post-seismic/ tsunami surveys reporting on coastal deformation, tsunami inundation, and building stock damage. These data are genuinely relevant to evaluate scenario modeling results supporting general approaches to model the tsunami hazard and risk.</p><p>Despite the usefulness of rapidly determined finite-fault slip inversions for tsunami warning systems, the reliability of calculated elastic deformations along the coastline based on these models and subsequently tsunami flow depth and runup estimates might be questionable. We primarily shed light on the possible impact of using various solutions for selected historical events by performing full tsunami scenario calculation. We evaluate the inverted slip model solutions from the perspective of a tsunami modeler, i.e. we compare results of the elastic deformation modelling to observed coastal uplift and tsunami inundation against post-seismic survey data. These are important as coastal deformation strongly affects tsunami inundation results. Secondly, we compare observed data to modeled data from inverted slip distributions to solutions based on simulated slip distributions on the same fault geometries to understand the possible range of outcomes. .</p><p>Given an inverted slip distribution, we first map those onto the Slab2.0 subduction interface and then calculate stochastic slip distributions. Thereafter, vertical seafloor/coastline deformations are computed using a triangular elastic dislocation model that captures the complexities of the subduction zone geometry. The deformations serve as initial conditions to a high-resolution numerical model that simulates the tsunami wave propagation and coastal inundations. Parallel computations are applied to overcome the large numerical computational efforts needed. Variable land surface roughness based on land cover data is used to simulate the accurate hydraulics of coastal inundation.</p><p>Based on our modelling approach, we find that some published slip inversion models are deficient in modelling observed coastal deformation using an elastic deformation model. Only when including tsunami data for the inversions, these models tend to be better constrained. Without these data, finite fault slip inversions for local tsunami forecasts might be misleading in spatial inundation estimates as deformation results may be incorrect. This can happen both ways, either underestimating or overestimating tsunami inundations. While there are many additional aspects in the tsunami modelling procedure, this is an important basic aspect.</p><p>Our results show that simulating stochastic slip distributions enables to cover the range of possible deformation and inundation results well. This result underlines that this approach is a useful tool to generate local probabilistic tsunami hazard and risk models.</p>


2021 ◽  
Vol 25 (10) ◽  
pp. 5603-5621
Author(s):  
Andrew J. Newman ◽  
Amanda G. Stone ◽  
Manabendra Saharia ◽  
Kathleen D. Holman ◽  
Nans Addor ◽  
...  

Abstract. This study employs a stochastic hydrologic modeling framework to evaluate the sensitivity of flood frequency analyses to different components of the hydrologic modeling chain. The major components of the stochastic hydrologic modeling chain, including model structure, model parameter estimation, initial conditions, and precipitation inputs were examined across return periods from 2 to 100 000 years at two watersheds representing different hydroclimates across the western USA. A total of 10 hydrologic model structures were configured, calibrated, and run within the Framework for Understanding Structural Errors (FUSE) modular modeling framework for each of the two watersheds. Model parameters and initial conditions were derived from long-term calibrated simulations using a 100 member historical meteorology ensemble. A stochastic event-based hydrologic modeling workflow was developed using the calibrated models in which millions of flood event simulations were performed for each basin. The analysis of variance method was then used to quantify the relative contributions of model structure, model parameters, initial conditions, and precipitation inputs to flood magnitudes for different return periods. Results demonstrate that different components of the modeling chain have different sensitivities for different return periods. Precipitation inputs contribute most to the variance of rare floods, while initial conditions are most influential for more frequent events. However, the hydrological model structure and structure–parameter interactions together play an equally important role in specific cases, depending on the basin characteristics and type of flood metric of interest. This study highlights the importance of critically assessing model underpinnings, understanding flood generation processes, and selecting appropriate hydrological models that are consistent with our understanding of flood generation processes.


2021 ◽  
Author(s):  
Raquel Felix ◽  
Judith Hubbard ◽  
Kyle Bradley ◽  
Karen Lythgoe ◽  
Linlin Li ◽  
...  

Abstract. The tsunami hazard posed by the Flores backarc thrust, which runs along the northern coast of the islands of Bali and Lombok, Indonesia, is poorly studied compared to the Sunda megathrust, situated ~250 km to the south of the islands. However, the 2018 Lombok earthquake sequence demonstrated the seismic potential of the western Flores Thrust when a fault ramp beneath the island of Lombok ruptured in two Mw 6.9 earthquakes. Although the uplift in these events mostly occurred below land, the sequence still generated 1–2.5 m-high local tsunamis along the northern coast of Lombok (Wibowo et al., 2021). Historical records show that the Flores fault system in the Lombok and Bali region has generated at least six ≥ Ms 6.5 tsunamigenic earthquakes since 1800 CE. Hence, it is important to assess the possible tsunami hazard represented by this fault system. Here, we focus on the submarine fault segment located between the islands of Lombok and Bali (below the Lombok Strait). We assess modeled tsunami patterns generated by fault slip in six earthquake scenarios (slip of 1–5 m, representing Mw 7.2–7.9+), with a focus on impacts on the capital cities of Mataram, Lombok and Denpasar, Bali, which lie on the coasts facing the strait. We use a geologically constrained earthquake model informed by the Lombok earthquake sequence (Lythgoe et al., 2021), together with a high-resolution bathymetry dataset developed by combining direct measurements from GEBCO with sounding measurements from the official nautical charts for Indonesia. Our results show that fault rupture in this region could trigger a tsunami reaching Mataram in < 8 minutes and Denpasar in ~10–15 minutes, with multiple waves. For an earthquake with 3–5 m of coseismic slip, Mataram and Denpasar experience maximum wave heights of ~1.3–3.3 m and ~0.7 to 1.5 m, respectively. Furthermore, our earthquake models indicate that both cities would experience coseismic subsidence of 20–40 cm, exacerbating their exposure to both the tsunami and other coastal hazards. Overall, Mataram city is more exposed than Denpasar to high tsunami waves arriving quickly from the fault source. To understand how a tsunami would affect Mataram, we model the associated inundation using the 5 m slip model and show that Mataram is inundated ~55–140 m inland along the northern coast and ~230 m along the southern coast, with maximum flow depths of ~2–3 m. Our study highlights that the early tsunami arrival in Mataram, Lombok gives little time for residents to evacuate. Raising their awareness about the potential for locally generated tsunamis and the need for evacuation plans is important to help them respond immediately after experiencing strong ground shaking.


2021 ◽  
Vol 8 ◽  
Author(s):  
Natalia Zamora ◽  
Patricio A. Catalán ◽  
Alejandra Gubler ◽  
Matías Carvajal

Tsunami hazard is typically assessed from inundation flow depths estimated from one or many earthquake scenarios. However, information about the exact time when such inundation occurs is seldom considered, yet it is crucial for pedestrian evacuation planning. Here, we propose an approach to estimating tsunami hazard by combining tsunami flow depths and arrival times to produce a nine-level, qualitative hazard scale that is translated into a simple tsunami hazard map. To do this, one of the most populated regions of the coast of Chile is considered as the sample site, using a large set of 2,800 tsunamigenic sources from earthquakes with magnitudes in the range Mw8.6−9.2, modeled from generation to inundation at high resolution. Main outcomes show great dependency of the hazard categorization on the tsunami time arrival, and less to the flow depths. Also, these results demonstrate that incorporating different sources of variability such as different earthquake magnitudes and locations as well as stochastic slip distributions is essential. Moreover, this proof-of-concept exercise clearly shows that the qualitative hybrid categorization of the tsunami hazard allows for its more effective understanding, which can be beneficial for designing mitigation strategies such as evacuation planning, and its management.


2018 ◽  
Vol 13 (7) ◽  
pp. 1272-1287
Author(s):  
Kwanchai Pakoksung ◽  
Anawat Suppasri ◽  
Panon Latcharote ◽  
Abdul Muhari ◽  
Fumihiko Imamura ◽  
...  

We present outcomes of our collaborative research between tsunami engineering laboratory, Tohoku University and the Willis Research Network (WRN) on global tsunami risk assessment since 2010. First we assessed tsunami hazards in Indian Ocean and west Pacific from major earthquakes based on historical records. After the 2011 Japan tsunami, various kind of fragility functions were developed for human casualty, buildings, marine vessels, etc based on the actual data. Especially, detailed tsunami hazard assessments were performed in many areas using fine bathymetry and topography data all over Japan including hazards from the worst case tsunamigenic earthquakes provided by central government and local governments in Hokkaido, Japan Sea and Nankai Trough. These results from the detailed hazard and vulnerability assessment were used for detailed tsunami risk in Japan. The Willis’s Japan tsunami model was then first released in December 2014. The model have been updating based on the updated or revised tsunami sources model and fragility functions. Detailed tsunami hazards from potential tsunami events in the Bay of Bengal, South China Sea and some parts of Indonesia were also performed in 2014. In October 2016, our contribution on the historical and future tsunami hazard assessment in global scale based on historical records over the last 400 years was conducted as an activity to increase tsunami awareness as part of World Tsunami Awareness Day. The current activities are to extend the target areas in Japan to Okinawa and assessing disaster risk reduction based on the present and planned tsunami countermeasures. We present the outcomes of the collaborative research done since 2010 by the Tsunami Engineering Laboratory of Tohoku University and the Willis Research Network (WRN) on global tsunami risk assessment. First, we assessed, based on historical records, the tsunami hazards in the Indian Ocean and western Pacific from major earthquakes. Since the 2011 Japan tsunami, various kinds of fragility functions have been developed for human casualties, buildings, marine vessels, etc., based on the actual data. Detailed tsunami hazard assessments have been performed in many areas of Japan using fine bathymetry and topography data from all over Japan, including data on hazards from the worst-case tsunamigenic earthquakes. These data have been provided by the Cabinet Office, Japan. The results from the detailed hazard and vulnerability assessments were used for detailed tsunami risk assessments in Japan. The Willis Japan tsunami model was then released in December 2014. The model has been updated based on the updated or revised tsunami source model and fragility functions. Detailed tsunami hazards from potential tsunami events in the Bay of Bengal, South China Sea, and some parts of Indonesia were also performed in 2014. In October 2016, our contribution to the historical and future tsunami hazard assessment on a global scale based on historical records over the last 400 years was conducted as an activity to increase tsunami awareness as part of World Tsunami Awareness Day. The current activities are to extend the target areas in Japan to Okinawa and to assess the disaster risk reduction based on the present and planned tsunami countermeasures.


Sign in / Sign up

Export Citation Format

Share Document