scholarly journals Tsunami hazard in Lombok & Bali, Indonesia, due to the Flores backarc thrust

2021 ◽  
Author(s):  
Raquel Felix ◽  
Judith Hubbard ◽  
Kyle Bradley ◽  
Karen Lythgoe ◽  
Linlin Li ◽  
...  

Abstract. The tsunami hazard posed by the Flores backarc thrust, which runs along the northern coast of the islands of Bali and Lombok, Indonesia, is poorly studied compared to the Sunda megathrust, situated ~250 km to the south of the islands. However, the 2018 Lombok earthquake sequence demonstrated the seismic potential of the western Flores Thrust when a fault ramp beneath the island of Lombok ruptured in two Mw 6.9 earthquakes. Although the uplift in these events mostly occurred below land, the sequence still generated 1–2.5 m-high local tsunamis along the northern coast of Lombok (Wibowo et al., 2021). Historical records show that the Flores fault system in the Lombok and Bali region has generated at least six ≥ Ms 6.5 tsunamigenic earthquakes since 1800 CE. Hence, it is important to assess the possible tsunami hazard represented by this fault system. Here, we focus on the submarine fault segment located between the islands of Lombok and Bali (below the Lombok Strait). We assess modeled tsunami patterns generated by fault slip in six earthquake scenarios (slip of 1–5 m, representing Mw 7.2–7.9+), with a focus on impacts on the capital cities of Mataram, Lombok and Denpasar, Bali, which lie on the coasts facing the strait. We use a geologically constrained earthquake model informed by the Lombok earthquake sequence (Lythgoe et al., 2021), together with a high-resolution bathymetry dataset developed by combining direct measurements from GEBCO with sounding measurements from the official nautical charts for Indonesia. Our results show that fault rupture in this region could trigger a tsunami reaching Mataram in < 8 minutes and Denpasar in ~10–15 minutes, with multiple waves. For an earthquake with 3–5 m of coseismic slip, Mataram and Denpasar experience maximum wave heights of ~1.3–3.3 m and ~0.7 to 1.5 m, respectively. Furthermore, our earthquake models indicate that both cities would experience coseismic subsidence of 20–40 cm, exacerbating their exposure to both the tsunami and other coastal hazards. Overall, Mataram city is more exposed than Denpasar to high tsunami waves arriving quickly from the fault source. To understand how a tsunami would affect Mataram, we model the associated inundation using the 5 m slip model and show that Mataram is inundated ~55–140 m inland along the northern coast and ~230 m along the southern coast, with maximum flow depths of ~2–3 m. Our study highlights that the early tsunami arrival in Mataram, Lombok gives little time for residents to evacuate. Raising their awareness about the potential for locally generated tsunamis and the need for evacuation plans is important to help them respond immediately after experiencing strong ground shaking.

2020 ◽  
Vol 110 (6) ◽  
pp. 3050-3063
Author(s):  
Anne Meylani Magdalena Sirait ◽  
Anne S. Meltzer ◽  
Felix Waldhauser ◽  
Joshua C. Stachnik ◽  
Daryono Daryono ◽  
...  

ABSTRACT The west part of Java sits at the transition from oblique subduction of the Australian plate under the Sunda block of the Eurasian plate along Sumatra to orthogonal convergence along central and eastern Java. This region has experienced several destructive earthquakes, the 17 July 2006 Mw 7.7 earthquake and tsunami off the coast of Pangandaran and the 2 September 2009 Mw 7 earthquake, located off the coast of Tasikmalaya. More recently, on 15 December 2017, an Mw 6.5 earthquake occurred off the coast near Pangandaran, and, on 23 January 2018, an Mw 5.9 earthquake occurred offshore Lebak, between Pelabuhan Ratu and Ujung Kulon. Ground shaking and damage occurred locally and in Jakarta on the northern coast of Java. In this study, we use the double-difference technique to relocate both mainshocks and 10 months of seismicity (228 events) following the earthquakes. The relocation result improved the mainshock locations and depth distribution of earthquakes. Moment tensor of the December 2017 event located the hypocenter at ∼108  km depth within the subducting slab. The best-fit relocation places the depth at 61 km, close to the slab interface. Aftershocks occur between 68 and 86 km depth and align along a steeper plane than slab geometry models. The January 2018 event is located at ∼46  km depth. Aftershocks form a near-vertical, pipe-like structure from the plate interface to ∼10  km depth. A burst of aftershocks immediately following the mainshock shows a shallowing upward trend at a rate of ∼2  km/hr, suggesting that a fluid pressure wave released from the oceanic crust is causing brittle failure in the overriding plate, followed by upward migration of fluids. Five months later, shallow (&lt;25  km) seismicity collocates with background seismicity, suggesting the January 2018 event activated the Pelabuhan Ratu fault system close to the coast.


2020 ◽  
Vol 500 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Jack Dignan ◽  
Aaron Micallef ◽  
Christof Mueller ◽  
Attilio Sulli ◽  
Elisabetta Zizzo ◽  
...  

AbstractPalermo is a populous city situated on the northern coast of Sicily, bordered by the Tyrrhenian Sea. This central part of the Mediterranean Sea features dramatic bathymetry, numerous subaqueous landslides and is also the epicentre to many subaqueous earthquakes. As such, the region is an area prone to tsunamis. This investigation uses the Cornell Multi-Grid Coupled Tsunami (COMCOT) tsunami modelling package to simulate five near-field landslides, and five near-field earthquakes regarded as worst-case credible scenarios for Palermo. The seismic simulations produced waves on a very small scale, the largest being c. 5 cm at its maximum height, and none of the earthquake-generated tsunami waves produced any measurable inundation. The landslide simulations produced larger waves ranging from 1.9 to 12 m in maximum height, two of which resulted in inundation in areas surrounding the Port of Palermo. Sensitivity analysis identified that fault width and dislocation as well as landslide-specific gravity did have significant influence over maximum wave height, inundation and maximum run-up wave height. There are methodological issues limiting the extent to which this study forms a comprehensive tsunami hazard assessment of Palermo, such as gaps in bathymetric data, computational restrictions and lack of a probabilistic element. These issues are counteracted by the fact that this study does serve as a robust first step in identifying that landslides in the region may produce larger tsunami waves than earthquakes, and that the directionality of mass movement is critical in landslide-driven tsunami propagation in the southern Tyrrhenian region.


2017 ◽  
Vol 33 (2) ◽  
pp. 709-728 ◽  
Author(s):  
Gabriel Candia ◽  
Gregory P. de Pascale ◽  
Gonzalo Montalva ◽  
Christian Ledezma

The 2015 Illapel earthquake sequence in Central Chile, occurred along the subduction zone interface in a known seismic gap, with moment magnitudes of M w 8.3, M w 7.1, and M w 7.6. The main event triggered tsunami waves that damaged structures along the coast, while the surface ground motion induced localized liquefaction, settlement of bridge abutments, rockfall, debris flow, and collapse in several adobe structures. Because of the strict seismic codes in Chile, damage to modern engineered infrastructure was limited, although there was widespread tsunami-induced damage to one-story and two-stories residential homes adjacent to the shoreline. Soon after the earthquake, shear wave measurements were performed at selected potentially liquefiable sites to test recent V S-based liquefaction susceptibility approaches. This paper describes the effects that this earthquake sequence and tsunami had on a number of retaining structures, bridge abutments, and cuts along Chile's main highway (Route 5). Since tsunami waves redistribute coastal and near shore sand along the coast, liquefaction evidence in coastal zones with tsunami waves is sometimes obscured within minutes because the tsunami waves entrain and deposit sand that covers or erodes evidence of liquefaction (e.g., lateral spread or sand blows). This suggests that liquefaction occurrence and hazard may be under estimated in coastal zones. Importantly, the areas that experienced the greatest coseismic slip, appeared to have the largest volumes of rockfall that impacted roads, which suggests that coseismic slip maps, generated immediately after the shaking stops, can provide a first order indication about where to expect damage during future major events.


2020 ◽  
Vol 12 (23) ◽  
pp. 3883
Author(s):  
Chenglong Li ◽  
Guohong Zhang ◽  
Xinjian Shan ◽  
Dezheng Zhao ◽  
Yanchuan Li ◽  
...  

The 2019 Ridgecrest, California earthquake sequence ruptured along a complex fault system and triggered seismic and aseismic slips on intersecting faults. To characterize the surface rupture kinematics and fault slip distribution, we used optical images and Interferometric Synthetic Aperture Radar (InSAR) observations to reconstruct the displacement caused by the earthquake sequence. We further calculated curl and divergence from the north-south and east-west components, to effectively identify the surface rupture traces. The results show that the major seismogenic fault had a length of ~55 km and strike of 320° and consisted of five secondary faults. On the basis of the determined multiple-fault geometries, we inverted the coseismic slip distributions by InSAR measurements, which indicates that the Mw7.1 mainshock was dominated by the right-lateral strike-slip (maximum strike-slip of ~5.8 m at the depth of ~7.5 km), with a small dip-slip component (peaking at ~1.8 m) on an east-dipping fault. The Mw6.4 foreshock was dominated by the left-lateral strike-slip on a north-dipping fault. These earthquakes triggered obvious aseismic creep along the Garlock fault (117.3° W–117.5° W). These results are consistent with the rupture process of the earthquake sequence, which featured a complicated cascading rupture rather than a single continuous rupture front propagating along multiple faults.


2021 ◽  
Author(s):  
Claudia Abril ◽  
Martin Mai ◽  
Benedikt Halldórsson ◽  
Bo Li ◽  
Alice Gabriel ◽  
...  

&lt;p&gt;The Tj&amp;#246;rnes Fracture Zone (TFZ) in North Iceland is the largest and most complex zone of transform faulting in Iceland, formed due to a ridge-jump between two spreading centers of the Mid-Atlantic Ridge, the Northern Volcanic Zone and Kolbeinsey Ridge in North Iceland. Strong earthquakes (Ms&gt;6) have repeatedly occurred in the TFZ and affected the North Icelandic population. In particular the large historical earthquakes of 1755 (Ms 7.0) and 1872 (doublet, Ms 6.5), have been associated with the H&amp;#250;sav&amp;#305;&amp;#769;k-Flatey Fault (HFF), which is the largest linear strike-slip transform fault in the TFZ, and in Iceland. We simulate fault rupture on the HFF and the corresponding near-fault ground motion for several potential earthquake scenarios, including scenario events that replicate the large 1755 and 1872 events. Such simulations are relevant for the town of H&amp;#250;sav&amp;#305;&amp;#769;k in particular, as it is located on top of the HFF and is therefore subject to the highest seismic hazard in the country. Due to the mostly offshore location of the HFF, its precise geometry has only recently been studied in more detail. We compile updated seismological and geophysical information in the area, such as a recently derived three-dimensional velocity model for P and S waves. Seismicity relocations using this velocity model, together with bathymetric and geodetic data, provide detailed information to constrain the fault geometry. In addition, we use this 3D velocity model to simulate seismic wave propagation. For this purpose, we generate a variety of kinematic earthquake-rupture scenarios, and apply a 3D finite-difference method (SORD) to propagate the radiated seismic waves through Earth structure. Slip distributions for the different scenarios are computed using a von Karman autocorrelation function whose parameters are calibrated with slip distributions available for a few recent Icelandic earthquakes. Simulated scenarios provide synthetic ground motion and time histories and estimates of peak ground motion parameters (PGA and PGV) at low frequencies (&lt;2 Hz) for H&amp;#250;sav&amp;#237;k and other main towns in North Iceland along with maps of ground shaking for the entire region [130 km x 110 km]. Ground motion estimates are compared with those provided by empirical ground motion models calibrated to Icelandic earthquakes and dynamic fault-rupture simulations for the HFF. Directivity effects towards or away from the coastal areas are analyzed to estimate the expected range of shaking. Thick sedimentary deposits (up to &amp;#8764;4 km thick) located offshore on top of the HFF (reported by seismic, gravity anomaly and tomographic studies) may affect the effective depth of the fault's top boundary and the surface rupture potential. The results of this study showcase the extent of expected ground motions from significant and likely earthquake scenarios on the HFF. Finite fault earthquake simulations complement the currently available information on seismic hazard for North Iceland, and are a first step towards a systematic and large-scale earthquake scenario database on the HFF, and for the entire fault system of the TFZ, that will enable comprehensive and physics-based hazard assessment in the region.&lt;/p&gt;


2020 ◽  
Author(s):  
Dimitra Salmanidou ◽  
Mohammad Heidarzadeh ◽  
Serge Guillas

&lt;p&gt;Historical earthquakes in the Java subduction zone have given genesis to tsunami affecting the southwest coasts of the island of Java, in Indonesia. The most recent earthquake on the 17&lt;sup&gt;th&lt;/sup&gt; of July 2006, has given rise to a tsunami that killed more than 600 people. The tsunami was difficult to escape due to the small amount of ground shaking, which could have acted as an early warning, and due to the epicentre being very close to the shorelines, giving insufficient time for response. Historical data and scientific studies give little evidence for mega-thrust events in the Java trench, however such possibilities are not excluded and could have a devastating impact in the region. This work aims to assess the tsunami hazard occurring from a range of earthquake scenarios in the subduction zone. Taking as a benchmark the 2006 event, we initially validate our modelling approach against the wave observations recorded at three tide gauges. We then expand our work to account for future earthquake scenarios and their tsunamigenic consequences in the southern coasts of Java island. Bathymetry displacement is computed using the Okada elastic dislocation model. The nonlinear shallow water equation solver JAGURS is employed for the modelling of wave propagation. Our objective is to quantify the uncertainty of such events by using statistical surrogates: fast stochastic approximations of the model that can explore the likelihood of thousands of tsunami scenarios in a few moments of time. Gaussian process emulators are utilised to predict maximum wave amplification occurring from varying parameter distributions such as the moment magnitude of an earthquake. The resulting tsunami hazard footprints can be used in conjunction with existing socio-demographic information to assess tsunami risk in vulnerable areas. The end-data can eventually be used to inform policy making for better disaster mitigation planning.&lt;/p&gt;


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 678
Author(s):  
Mark van der Meijde ◽  
Md Ashrafuzzaman ◽  
Norman Kerle ◽  
Saad Khan ◽  
Harald van der Werff

It remains elusive why there was only weak and limited ground shaking in Kathmandu valley during the 25 April 2015 Mw 7.8 Gorkha, Nepal, earthquake. Our spectral element numerical simulations show that, during this earthquake, surface topography restricted the propagation of seismic energy into the valley. The mountains diverted the incoming seismic wave mostly to the eastern and western margins of the valley. As a result, we find de-amplification of peak ground displacement in most of the valley interior. Modeling of alternative earthquake scenarios of the same magnitude occurring at different locations shows that these will affect the Kathmandu valley much more strongly, up to 2–3 times more, than the 2015 Gorkha earthquake did. This indicates that surface topography contributed to the reduced seismic shaking for this specific earthquake and lessened the earthquake impact within the valley.


2018 ◽  
Vol 722 ◽  
pp. 447-461 ◽  
Author(s):  
Shengji Wei ◽  
Meng Chen ◽  
Xin Wang ◽  
Robert Graves ◽  
Eric Lindsey ◽  
...  

1995 ◽  
Vol 85 (3) ◽  
pp. 705-715
Author(s):  
Mark Andrew Tinker ◽  
Susan L. Beck

Abstract Regional distance surface waves are used to study the source parameters for moderate-size aftershocks of the 25 April 1992 Petrolia earthquake sequence. The Cascadia subduction zone had been relatively seismically inactive until the onset of the mainshock (Ms = 7.1). This underthrusting event establishes that the southern end of the North America-Gorda plate boundary is seismogenic. It was followed by two separate and distinct large aftershocks (Ms = 6.6 for both) occurring at 07:41 and 11:41 on 26 April, as well as thousands of other small aftershocks. Many of the aftershocks following the second large aftershock had magnitudes in the range of 4.0 to 5.5. Using intermediate-period surface-wave spectra, we estimate focal mechanisms and depths for one foreshock and six of the larger aftershocks (Md = 4.0 to 5.5). These seven events can be separated into two groups based on temporal, spatial, and principal stress orientation characteristics. Within two days of the mainshock, four aftershocks (Md = 4 to 5) occurred within 4 hr of each other that were located offshore and along the Mendocino fault. These four aftershocks comprise one group. They are shallow, thrust events with northeast-trending P axes. We interpret these aftershocks to represent internal compression within the North American accretionary prism as a result of Gorda plate subduction. The other three events compose the second group. The shallow, strike-slip mechanism determined for the 8 March foreshock (Md = 5.3) may reflect the right-lateral strike-slip motion associated with the interaction between the northern terminus of the San Andreas fault system and the eastern terminus of the Mendocino fault. The 10 May aftershock (Md = 4.1), located on the coast and north of the Mendocino triple junction, has a thrust fault focal mechanism. This event is shallow and probably occurred within the accretionary wedge on an imbricate thrust. A normal fault focal mechanism is obtained for the 5 June aftershock (Md = 4.8), located offshore and just north of the Mendocino fault. This event exhibits a large component of normal motion, representing internal failure within a rebounding accretionary wedge. These two aftershocks and the foreshock have dissimilar locations in space and time, but they do share a north-northwest oriented P axis.


2013 ◽  
Vol 362 ◽  
pp. 99-107 ◽  
Author(s):  
Shu-Kun Hsu ◽  
Yi-Ching Yeh ◽  
Jean-Claude Sibuet ◽  
Wen-Bin Doo ◽  
Ching-Hui Tsai

Sign in / Sign up

Export Citation Format

Share Document