Recorded Motions of the 6 April 2009 Mw 6.3 L'Aquila, Italy, Earthquake and Implications for Building Structural Damage: Overview

2010 ◽  
Vol 26 (3) ◽  
pp. 651-684 ◽  
Author(s):  
Mehmet Çelebi ◽  
Paolo Bazzurro ◽  
Lauro Chiaraluce ◽  
Paolo Clemente ◽  
Luis Decanini ◽  
...  

The normal-faulting earthquake of 6 April 2009 in the Abruzzo Region of central Italy caused heavy losses of life and substantial damage to centuries-old buildings of significant cultural importance and to modern reinforced-concrete-framed buildings with hollow masonry infill walls. Although structural deficiencies were significant and widespread, the study of the characteristics of strong motion data from the heavily affected area indicated that the short duration of strong shaking may have spared many more damaged buildings from collapsing. It is recognized that, with this caveat of short-duration shaking, the infill walls may have played a very important role in preventing further deterioration or collapse of many buildings. It is concluded that better new or retrofit construction practices that include reinforced-concrete shear walls may prove helpful in reducing risks in such seismic areas of Italy, other Mediterranean countries, and even in United States, where there are large inventories of deficient structures.

1977 ◽  
Vol 67 (2) ◽  
pp. 493-515
Author(s):  
Christopher Rojahn ◽  
B. J. Morrill

Abstract Two earthquakes occurred on the island of Hawaii on November 29, 1975, a magnitude (Ms) 5.7 event at 0335 (local time) and a magnitude (Ms) 7.2 event at 0447. During the larger event, a maximum acceleration of 0.22 g was recorded in the southern part of Hilo, 43 km north of the epicenter. A 0.05 g threshold duration of 13.7 sec was measured for the same component. Smaller amplitude accelerograph records were obtained at two other locations on the island along with four seismoscope records. During or subsequent to the larger event, a large sector of the southeastern coastline subsided by as much as 3.5 meters. A tsunami generated by the larger event caused at least one death (one person also missing), injury to 28 persons, and significant structural and nonstructural damage. Only scattered evidence of strong ground shaking was observed in the epicentral area, and most of the several dozen nearby structures sustained little or no structural damage from ground shaking. In Hilo, 45 km north of the Ms = 7.2 epicenter, structural and nonstructural damage was slight to moderate but more extensive than elsewhere on the island.


2019 ◽  
Vol 11 (4) ◽  
pp. 503-517 ◽  
Author(s):  
Eric De Jesus Vega ◽  
Luis A. Montejo

Abstract This article investigates the level of influence that strong motion duration may have on the inelastic demand of reinforced concrete structures. Sets of short-duration spectrally equivalent records are generated using as target the response spectrum of an actual long-duration record. The sets of short-duration records are applied to carefully calibrated numerical models of the structures along with the target long-duration records. The input motions are applied in an incremental dynamic analysis fashion, so that the duration effect at different levels of inelastic demand can be investigated. It was found that long-duration records tend to impose larger inelastic demands. However, such influence is difficult to quantify, as it was found to depend on the dynamic properties of the structure, the strength, and stiffness degrading characteristics, the approach used to generate the numerical model and the seismic scenario (target spectrum). While for some scenarios, the dominance of the long record was evident; in other scenarios, the set of short records clearly imposed larger demands than the long record. The detrimental effect of large strong motion durations was mainly observed in relatively rigid structures and poorly detailed flexible structures. The modeling approach was found to play an important role in the perceived effect of duration, with the lumped plasticity multilinear hysteretic models suggesting that the demands from the long records can be up to twice the inferred from distributed plasticity fiber models.


2009 ◽  
Vol 47 (4) ◽  
Author(s):  
B. Hernandez ◽  
M. Cocco ◽  
F. Cotton ◽  
S. Stramondo ◽  
O. Scotti ◽  
...  

2011 ◽  
Vol 137 (10) ◽  
pp. 1215-1228 ◽  
Author(s):  
Hae Young Noh ◽  
K. Krishnan Nair ◽  
Dimitrios G. Lignos ◽  
Anne S. Kiremidjian

2013 ◽  
Vol 40 (8) ◽  
pp. 693-710 ◽  
Author(s):  
Murat Saatcioglu ◽  
Dan Palermo ◽  
Ahmed Ghobarah ◽  
Denis Mitchell ◽  
Rob Simpson ◽  
...  

The paper presents observed damage in reinforced concrete buildings during the 27 February 2010 Maule earthquake in Chile. Performance of concrete frame and shear wall buildings are discussed with emphasis on seismic deficiencies in design and construction practices. It is shown that the majority of structural damage in multistorey and high-rise buildings can be attributed to poor performance of slender shear walls, without confined boundary elements, suffering from crushing of concrete and buckling of vertical wall reinforcement. Use of irregular buildings, lack of seismic detailing, and the interference of nonstructural elements were commonly observed seismic deficiencies. A comparison is made between Chilean and Canadian design practices with references made to the applicable code clauses. Lessons are drawn from the observed structural performance.


2016 ◽  
Vol 59 ◽  
Author(s):  
Chiara Ladina ◽  
Simone Marzorati ◽  
Giancarlo Monachesi ◽  
Marco Cattaneo ◽  
Massimo Frapiccini ◽  
...  

<p>The Marche Region, in collaboration with INGV, has promoted a project to monitoring public strategic buildings with permanent accelerometer installed at the base of the structures. Public <ins cite="mailto:chiara" datetime="2016-09-27T12:50">structures</ins> play a primary role to maintain the functionality of a local community. Information about vibratory characteristics of the building and subsoil, in addition to the seismic instrumental history that describe the seismic shaking at the base of the structure are collected for each buildings. The real-time acquisition of seismic data allows to obtain accelerometric time history soon after the occurrence of an earthquake. The event of 24 August 2016 in Central Italy was an opportunity to test the functionality of this implemented system. In this work the parameters obtained from strong motion data recorded at the base of the structures were analyzed and the values obtained were inserted with some <ins cite="mailto:mnoise" datetime="2016-09-26T10:13">empirical relationships </ins>used to provide intensity microseismic values and damage indices.</p>


2021 ◽  
Vol 7 (3) ◽  
pp. 151
Author(s):  
Başak Zengin

Since the ground floor of most of the buildings in our country is designed as a shop or ground floor (in the buildings created as a workplace), there is very little infill wall ratio on the ground floors due to architectural and functional reasons, and some of them do not even exist at all. However, infill walls significantly increase the horizontal rigidity and strength of the structure, thus causing a decrease in the period value that determines the earthquake loads that will affect the structure. However, the infill wall meets the first destructive forces of the earthquake, and during this time, it cracks and absorbs some of the earthquake energy. The structural system elements of the building (columns and shear walls) start to meet the earthquake forces only when the infill walls are damaged and fail. In this direction, the aim of this study is to investigate to what extent the amount of infill wall on the ground floor affects the period of the building, and whether there are soft storey irregularities in the building according to the change in the amount of infill wall on the ground floor. In this study, while there are infill walls on all floors and all axes of buildings of various heights (3, 6, 9 and 11 floors), the amount of infill walls in the x and y directions on the ground floors is reduced to a certain extent, and many models are created until the ground floor is completely without infill walls. All these models created were analyzed with the support of the SAP2000 program, and the period values were determined and examined according to the soft storey problems and compared with the case of the entire building with and without infill walls. In addition, it was examined whether the period formulas determined as a result of the studies and taking into account the infill wall give realistic results for the situation examined in this study.


Sign in / Sign up

Export Citation Format

Share Document