scholarly journals Peroxisome proliferator-activated receptor α is required for feedback regulation of highly unsaturated fatty acid synthesis

2005 ◽  
Vol 46 (11) ◽  
pp. 2432-2440 ◽  
Author(s):  
Yue Li ◽  
Takayuki Y. Nara ◽  
Manabu T. Nakamura
2020 ◽  
Vol 98 (3) ◽  
Author(s):  
Huibin Tian ◽  
Jun Luo ◽  
Hengbo Shi ◽  
Xiaoying Chen ◽  
Jiao Wu ◽  
...  

Abstract A key member of the nuclear receptor superfamily is the peroxisome proliferator-activated receptor alpha (PPARA) isoform, which in nonruminants is closely associated with fatty acid oxidation. Whether PPARA plays a role in milk fatty acid synthesis in ruminants is unknown. The main objective of the present study was to use primary goat mammary epithelial cells (GMEC) to activate PPARA via the agonist WY-14643 (WY) or to silence it via transfection of small-interfering RNA (siRNA). Three copies of the peroxisome proliferator-activated receptor response element (PPRE) contained in a luciferase reporter vector were transfected into GMEC followed by incubation with WY at 0, 10, 20, 30, 50, or 100 µM. A dose of 50 µM WY was most effective at activating PPRE without influencing PPARA mRNA abundance. Transfecting siRNA targeting PPARA decreased its mRNA abundance to 20% and protein level to 50% of basal levels. Use of WY upregulated FASN, SCD1, ACSL1, DGAT1, FABP4, and CD36 (1.1-, 1.5-, 2-, 1.4-, 1.5-, and 5-fold, respectively), but downregulated DGAT2 and PGC1A (−20% and −40%, respectively) abundance. In contrast, triacylglycerol concentration decreased and the content and desaturation index of C16:1 and C18:1 increased. Thus, activation of PPARA via WY appeared to channel fatty acids away from esterification. Knockdown of PPARA via siRNA downregulated ACACA, SCD1, AGPAT6, CD36, HSL, and SREBF1 (−43%, −67%, −16%, −56%, −26%, and −29%, respectively), but upregulated ACSL1, DGAT2, FABP3, and PGC1A (2-, 1.4-, 1.3-, and 2.5-fold, respectively) mRNA abundance. A decrease in the content and desaturation index of C16:1 and C18:1 coupled with an increase in triacylglycerol content accompanied those effects at the mRNA level. Overall, data suggest that PPARA could promote the synthesis of MUFA in GMEC through its effects on mRNA abundance of genes related to fatty acid synthesis, oxidation, transport, and triacylglycerol synthesis.


Lipids ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Xiaozhong Zheng ◽  
Douglas R. Tocher ◽  
Cathryn A. Dickson ◽  
J. Gordon Bell ◽  
Alan J. Teale

2009 ◽  
Vol 11 (5) ◽  
pp. 627-639 ◽  
Author(s):  
Sofia Morais ◽  
Oscar Monroig ◽  
Xiaozhong Zheng ◽  
Michael J. Leaver ◽  
Douglas R. Tocher

Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 799 ◽  
Author(s):  
Lei Liu ◽  
Chunyan Fu ◽  
Fuchang Li

Short-chain fatty acids (SCFAs) (a microbial fermentation production in the rabbit gut) have an important role in many physiological processes, which may be related to the reduced body fat of rabbits. In the present experiment, we study the function of acetate (a major SCFA in the rabbit gut) on fat metabolism. Ninety rabbits (40 days of age) were randomly divided into three groups: a sham control group (injection of saline for four days); a group experiencing subcutaneous injection of acetate for four days (2 g/kg BM per day, one injection each day, acetate); and a pair-fed sham treatment group. The results show that acetate-inhibited lipid accumulation by promoting lipolysis and fatty acid oxidation and inhibiting fatty acid synthesis. Activated G protein-coupled receptor 41/43, adenosine monophosphate activated protein kinase (AMPK) and extracellular-signal-regulated kinase (ERK) 1/2 signal pathways were likely to participate in the regulation in lipid accumulation of acetate. Acetate reduced hepatic triglyceride content by inhibiting fatty acid synthesis, enhancing fatty acid oxidation and lipid output. Inhibited peroxisome proliferator-activated receptor α (PPARα) and activated AMPK and ERK1/2 signal pathways were related to the process in liver. Acetate reduced intramuscular triglyceride level via increasing fatty acid uptake and fatty acid oxidation. PPARα was associated with the acetate-reduced intracellular fat content.


Sign in / Sign up

Export Citation Format

Share Document