Anti-cancer activity of NVP-TAE226, a potent dual FAK/IGF-IR kinase inhibitor, against pancreatic carcinoma

2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13162-13162 ◽  
Author(s):  
S. Hatakeyama ◽  
D. Tomioka ◽  
E. Kawahara ◽  
N. Matsuura ◽  
K. Masuya ◽  
...  

13162 Background: Focal adhesion kinase (FAK) is a non-receptor cytoplasmic tyrosine kinase that regulates multiple cell functions. Elevated expression levels of FAK have been detected in various tumor samples and are closely correlated with invasive potential. Activation of integrins and the growth factor receptors result in FAK autophosphorylation at Y397 and the presentation of suitable binding sites for proteins containing either SH2 or phosphotyrosine binding domains. Recent evidences suggest that FAK plays important roles in cancer cell proliferation and survival. IGF-IR function is required for tumor cell survival, but dispensable for survival of normal cells. Therefore, a dual inhibitor of both kinases may selectively block the growth, migration, and survival of FAK- and IGF-IR- expressing tumor cells compared to proliferating and migrating normal cells. Methods: In this study, anti-cancer activity of NVP-TAE226 that is identified as a potent and selective FAK inhibitor was evaluated in cancer cell lines panel and MIA PaCa-2 pancreatic carcinoma in vivo model. Results: Mean GI50 value of NVP-TAE226 against 37 cancer cell lines was 0.76 μmole/L. Inhibition of cancer cell proliferation was not affected by expression of P-glycoprotein, suggesting that NVP-TAE226 is not served as a substrate of P-glycoprotein. Oral administration of NVP-TAE226 efficiently inhibited MIA PaCa-2 human pancreatic tumor growth at all doses tested. Tumor stasis was observed at a dose of 30 mg/kg, qd for 7×/week and tumor regression was observed at a dose of 100 mg/kg, qd for 5×/week. All animals tolerated NVP-TAE226 treatment up to 100 mg/kg, 5×/wk, qd, po for 2 weeks with no body weight loss. Inhibition of downstream signaling such as phosphorylation of Akt at Serine473 was accompanied by inhibition of FAK phosphorylation in human pancreatic carcinoma cell lines. Conclusions: NVP-TAE226 is a novel class of selective and small molecule kinase inhibitors with a potent in vivo activity and potential therapeutic application. No significant financial relationships to disclose.

2019 ◽  
Vol 19 (8) ◽  
pp. 992-1001 ◽  
Author(s):  
Ming-Jun Yu ◽  
Sen Yao ◽  
Ting-Ting Li ◽  
Rui Yang ◽  
Ri-Sheng Yao

Background: Cancer patients treated with targeted anti-cancer drug suffer from itch or pruritus. Itch or pruritus is an unpleasant sensation that brings about a negative impact on quality of life, and serious itch may lead to dose reduction and even discontinuation. Gastrin releasing peptide receptor (GRPR) plays a critical role in itch, inflammation and cancer, and GRPR antagonist has obvious effect on cancer, inflammation and itch. The aim of this paper is to develop a new agent with anti-cancer and anti-itch activity. Methods: A series of GRPR antagonist PD176252 analogues (3a-3l) were designed and synthesized. Both anticancer and anti-itch activities were evaluated. Anti-cancer activity was evaluated in three human cancer cell lines in vitro, the anti-itch activity in evaluated with Kunming mice by intrathecal injection of chloroquine phosphate as a modeling medium. And the cytotoxicity on normal cells was evaluated. Results: Of the tested compounds, compound 3i showed potently anti-cancer activity to all cancer cell lines tested with IC50 values of 10.5µM (lung), 11.6µM (breast) and 12.8µM (liver) respectively and it also showed significant inhibition of the scratching behavior. Comparing with PD17625, compound 3i and 3g gave better inhibition activities against all cancer cell lines, compound 3b, 3c and 3i showed better anti-itch activity. The compound 3i is safe for normal breast and liver normal cells, but it has high cytotoxicity on normal lung cell. Conclusion: The synthesized compounds have dual anti-cancer and anti-itch activity, so the development of drug with dual anti-tumor and anti-itch property is possible.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1838
Author(s):  
Naglaa M. Ahmed ◽  
Mahmoud M. Youns ◽  
Moustafa K. Soltan ◽  
Ahmed M. Said

Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1–4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 μM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53–79 %) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent.


Oncotarget ◽  
2017 ◽  
Vol 8 (60) ◽  
pp. 101461-101474 ◽  
Author(s):  
Yung-Lung Chang ◽  
Yu-Juei Hsu ◽  
Ying Chen ◽  
Yi-Wen Wang ◽  
Shih-Ming Huang

2017 ◽  
Vol 8 ◽  
pp. 493 ◽  
Author(s):  
Tasleem Arif ◽  
Lilia Vasilkovsky ◽  
Yael Refaely ◽  
Alexander Konson ◽  
Varda Shoshan-Barmatz

Sign in / Sign up

Export Citation Format

Share Document